Extensions 1→N→G→Q→1 with N=C2xC124 and Q=C2

Direct product G=NxQ with N=C2xC124 and Q=C2
dρLabelID
C22xC124496C2^2xC124496,37

Semidirect products G=N:Q with N=C2xC124 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC124):1C2 = D62:C4φ: C2/C1C2 ⊆ Aut C2xC124248(C2xC124):1C2496,13
(C2xC124):2C2 = C22:C4xC31φ: C2/C1C2 ⊆ Aut C2xC124248(C2xC124):2C2496,20
(C2xC124):3C2 = C2xD124φ: C2/C1C2 ⊆ Aut C2xC124248(C2xC124):3C2496,29
(C2xC124):4C2 = D124:5C2φ: C2/C1C2 ⊆ Aut C2xC1242482(C2xC124):4C2496,30
(C2xC124):5C2 = C2xC4xD31φ: C2/C1C2 ⊆ Aut C2xC124248(C2xC124):5C2496,28
(C2xC124):6C2 = D4xC62φ: C2/C1C2 ⊆ Aut C2xC124248(C2xC124):6C2496,38
(C2xC124):7C2 = C4oD4xC31φ: C2/C1C2 ⊆ Aut C2xC1242482(C2xC124):7C2496,40

Non-split extensions G=N.Q with N=C2xC124 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC124).1C2 = Dic31:C4φ: C2/C1C2 ⊆ Aut C2xC124496(C2xC124).1C2496,11
(C2xC124).2C2 = C4:C4xC31φ: C2/C1C2 ⊆ Aut C2xC124496(C2xC124).2C2496,21
(C2xC124).3C2 = C4:Dic31φ: C2/C1C2 ⊆ Aut C2xC124496(C2xC124).3C2496,12
(C2xC124).4C2 = C2xDic62φ: C2/C1C2 ⊆ Aut C2xC124496(C2xC124).4C2496,27
(C2xC124).5C2 = C4.Dic31φ: C2/C1C2 ⊆ Aut C2xC1242482(C2xC124).5C2496,9
(C2xC124).6C2 = C2xC31:C8φ: C2/C1C2 ⊆ Aut C2xC124496(C2xC124).6C2496,8
(C2xC124).7C2 = C4xDic31φ: C2/C1C2 ⊆ Aut C2xC124496(C2xC124).7C2496,10
(C2xC124).8C2 = M4(2)xC31φ: C2/C1C2 ⊆ Aut C2xC1242482(C2xC124).8C2496,23
(C2xC124).9C2 = Q8xC62φ: C2/C1C2 ⊆ Aut C2xC124496(C2xC124).9C2496,39

׿
x
:
Z
F
o
wr
Q
<