Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C4

Direct product G=N×Q with N=C2×Q8 and Q=C4
dρLabelID
C2×C4×Q864C2xC4xQ864,197

Semidirect products G=N:Q with N=C2×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1C4 = C23.31D4φ: C4/C1C4 ⊆ Out C2×Q816(C2xQ8):1C464,9
(C2×Q8)⋊2C4 = C423C4φ: C4/C1C4 ⊆ Out C2×Q8164(C2xQ8):2C464,35
(C2×Q8)⋊3C4 = C23.67C23φ: C4/C2C2 ⊆ Out C2×Q864(C2xQ8):3C464,72
(C2×Q8)⋊4C4 = C23.C23φ: C4/C2C2 ⊆ Out C2×Q8164(C2xQ8):4C464,91
(C2×Q8)⋊5C4 = C2×Q8⋊C4φ: C4/C2C2 ⊆ Out C2×Q864(C2xQ8):5C464,96
(C2×Q8)⋊6C4 = C23.38D4φ: C4/C2C2 ⊆ Out C2×Q832(C2xQ8):6C464,100
(C2×Q8)⋊7C4 = C2×C4≀C2φ: C4/C2C2 ⊆ Out C2×Q816(C2xQ8):7C464,101
(C2×Q8)⋊8C4 = C42⋊C22φ: C4/C2C2 ⊆ Out C2×Q8164(C2xQ8):8C464,102
(C2×Q8)⋊9C4 = C23.32C23φ: C4/C2C2 ⊆ Out C2×Q832(C2xQ8):9C464,200

Non-split extensions G=N.Q with N=C2×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Q8).1C4 = C42.C22φ: C4/C1C4 ⊆ Out C2×Q832(C2xQ8).1C464,10
(C2×Q8).2C4 = C4.6Q16φ: C4/C1C4 ⊆ Out C2×Q864(C2xQ8).2C464,14
(C2×Q8).3C4 = C42.3C4φ: C4/C1C4 ⊆ Out C2×Q8164-(C2xQ8).3C464,37
(C2×Q8).4C4 = Q8⋊C8φ: C4/C2C2 ⊆ Out C2×Q864(C2xQ8).4C464,7
(C2×Q8).5C4 = (C22×C8)⋊C2φ: C4/C2C2 ⊆ Out C2×Q832(C2xQ8).5C464,89
(C2×Q8).6C4 = C2×C4.10D4φ: C4/C2C2 ⊆ Out C2×Q832(C2xQ8).6C464,93
(C2×Q8).7C4 = C84Q8φ: C4/C2C2 ⊆ Out C2×Q864(C2xQ8).7C464,127
(C2×Q8).8C4 = Q8○M4(2)φ: C4/C2C2 ⊆ Out C2×Q8164(C2xQ8).8C464,249
(C2×Q8).9C4 = C8×Q8φ: trivial image64(C2xQ8).9C464,126
(C2×Q8).10C4 = C2×C8○D4φ: trivial image32(C2xQ8).10C464,248

׿
×
𝔽