Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C2×C3⋊S3 and Q=C2
dρLabelID
C22×C3⋊S336C2^2xC3:S372,49

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1C2 = C3⋊D12φ: C2/C1C2 ⊆ Out C2×C3⋊S3124+(C2xC3:S3):1C272,23
(C2×C3⋊S3)⋊2C2 = C12⋊S3φ: C2/C1C2 ⊆ Out C2×C3⋊S336(C2xC3:S3):2C272,33
(C2×C3⋊S3)⋊3C2 = C327D4φ: C2/C1C2 ⊆ Out C2×C3⋊S336(C2xC3:S3):3C272,35
(C2×C3⋊S3)⋊4C2 = C2×S32φ: C2/C1C2 ⊆ Out C2×C3⋊S3124+(C2xC3:S3):4C272,46

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).1C2 = C6.D6φ: C2/C1C2 ⊆ Out C2×C3⋊S3124+(C2xC3:S3).1C272,21
(C2×C3⋊S3).2C2 = C2×C32⋊C4φ: C2/C1C2 ⊆ Out C2×C3⋊S3124+(C2xC3:S3).2C272,45
(C2×C3⋊S3).3C2 = C4×C3⋊S3φ: trivial image36(C2xC3:S3).3C272,32

׿
×
𝔽