Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C4

Direct product G=N×Q with N=C2×C8 and Q=C4
dρLabelID
C2×C4×C864C2xC4xC864,83

Semidirect products G=N:Q with N=C2×C8 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1C4 = C4.9C42φ: C4/C1C4 ⊆ Aut C2×C8164(C2xC8):1C464,18
(C2×C8)⋊2C4 = M4(2)⋊4C4φ: C4/C1C4 ⊆ Aut C2×C8164(C2xC8):2C464,25
(C2×C8)⋊3C4 = C22.7C42φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8):3C464,17
(C2×C8)⋊4C4 = C22.4Q16φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8):4C464,21
(C2×C8)⋊5C4 = C2×C2.D8φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8):5C464,107
(C2×C8)⋊6C4 = C23.25D4φ: C4/C2C2 ⊆ Aut C2×C832(C2xC8):6C464,108
(C2×C8)⋊7C4 = C2×C4.Q8φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8):7C464,106
(C2×C8)⋊8C4 = C2×C8⋊C4φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8):8C464,84
(C2×C8)⋊9C4 = C82M4(2)φ: C4/C2C2 ⊆ Aut C2×C832(C2xC8):9C464,86

Non-split extensions G=N.Q with N=C2×C8 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C8).1C4 = C4.10C42φ: C4/C1C4 ⊆ Aut C2×C8164(C2xC8).1C464,19
(C2×C8).2C4 = C16⋊C4φ: C4/C1C4 ⊆ Aut C2×C8164(C2xC8).2C464,28
(C2×C8).3C4 = C23.C8φ: C4/C1C4 ⊆ Aut C2×C8164(C2xC8).3C464,30
(C2×C8).4C4 = C8⋊C8φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8).4C464,3
(C2×C8).5C4 = C4.C42φ: C4/C2C2 ⊆ Aut C2×C832(C2xC8).5C464,22
(C2×C8).6C4 = C22⋊C16φ: C4/C2C2 ⊆ Aut C2×C832(C2xC8).6C464,29
(C2×C8).7C4 = C4⋊C16φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8).7C464,44
(C2×C8).8C4 = C81C8φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8).8C464,16
(C2×C8).9C4 = C8.C8φ: C4/C2C2 ⊆ Aut C2×C8162(C2xC8).9C464,45
(C2×C8).10C4 = C2×C8.C4φ: C4/C2C2 ⊆ Aut C2×C832(C2xC8).10C464,110
(C2×C8).11C4 = C82C8φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8).11C464,15
(C2×C8).12C4 = C165C4φ: C4/C2C2 ⊆ Aut C2×C864(C2xC8).12C464,27
(C2×C8).13C4 = M6(2)φ: C4/C2C2 ⊆ Aut C2×C8322(C2xC8).13C464,51
(C2×C8).14C4 = C2×M5(2)φ: C4/C2C2 ⊆ Aut C2×C832(C2xC8).14C464,184

׿
×
𝔽