Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=C2

Direct product G=N×Q with N=C3×Dic3 and Q=C2
dρLabelID
C6×Dic324C6xDic372,29

Semidirect products G=N:Q with N=C3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1C2 = C3⋊D12φ: C2/C1C2 ⊆ Out C3×Dic3124+(C3xDic3):1C272,23
(C3×Dic3)⋊2C2 = S3×Dic3φ: C2/C1C2 ⊆ Out C3×Dic3244-(C3xDic3):2C272,20
(C3×Dic3)⋊3C2 = C6.D6φ: C2/C1C2 ⊆ Out C3×Dic3124+(C3xDic3):3C272,21
(C3×Dic3)⋊4C2 = C3×C3⋊D4φ: C2/C1C2 ⊆ Out C3×Dic3122(C3xDic3):4C272,30
(C3×Dic3)⋊5C2 = S3×C12φ: trivial image242(C3xDic3):5C272,27

Non-split extensions G=N.Q with N=C3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1C2 = C322Q8φ: C2/C1C2 ⊆ Out C3×Dic3244-(C3xDic3).1C272,24
(C3×Dic3).2C2 = C3×Dic6φ: C2/C1C2 ⊆ Out C3×Dic3242(C3xDic3).2C272,26

׿
×
𝔽