Extensions 1→N→G→Q→1 with N=C3xDic3 and Q=C2

Direct product G=NxQ with N=C3xDic3 and Q=C2
dρLabelID
C6xDic324C6xDic372,29

Semidirect products G=N:Q with N=C3xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic3):1C2 = C3:D12φ: C2/C1C2 ⊆ Out C3xDic3124+(C3xDic3):1C272,23
(C3xDic3):2C2 = S3xDic3φ: C2/C1C2 ⊆ Out C3xDic3244-(C3xDic3):2C272,20
(C3xDic3):3C2 = C6.D6φ: C2/C1C2 ⊆ Out C3xDic3124+(C3xDic3):3C272,21
(C3xDic3):4C2 = C3xC3:D4φ: C2/C1C2 ⊆ Out C3xDic3122(C3xDic3):4C272,30
(C3xDic3):5C2 = S3xC12φ: trivial image242(C3xDic3):5C272,27

Non-split extensions G=N.Q with N=C3xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic3).1C2 = C32:2Q8φ: C2/C1C2 ⊆ Out C3xDic3244-(C3xDic3).1C272,24
(C3xDic3).2C2 = C3xDic6φ: C2/C1C2 ⊆ Out C3xDic3242(C3xDic3).2C272,26

׿
x
:
Z
F
o
wr
Q
<