direct product, cyclic, abelian, monomial
Aliases: C77, also denoted Z77, SmallGroup(77,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C77 |
C1 — C77 |
C1 — C77 |
Generators and relations for C77
G = < a | a77=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77)
G:=sub<Sym(77)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77)]])
C77 is a maximal subgroup of
D77
77 conjugacy classes
class | 1 | 7A | ··· | 7F | 11A | ··· | 11J | 77A | ··· | 77BH |
order | 1 | 7 | ··· | 7 | 11 | ··· | 11 | 77 | ··· | 77 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
77 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | |||
image | C1 | C7 | C11 | C77 |
kernel | C77 | C11 | C7 | C1 |
# reps | 1 | 6 | 10 | 60 |
Matrix representation of C77 ►in GL1(𝔽463) generated by
277 |
G:=sub<GL(1,GF(463))| [277] >;
C77 in GAP, Magma, Sage, TeX
C_{77}
% in TeX
G:=Group("C77");
// GroupNames label
G:=SmallGroup(77,1);
// by ID
G=gap.SmallGroup(77,1);
# by ID
G:=PCGroup([2,-7,-11]);
// Polycyclic
G:=Group<a|a^77=1>;
// generators/relations
Export