Copied to
clipboard

G = C103order 103

Cyclic group

p-group, cyclic, elementary abelian, simple, monomial

Aliases: C103, also denoted Z103, SmallGroup(103,1)

Series: Derived Chief Lower central Upper central Jennings

C1 — C103
C1 — C103
C1 — C103
C1 — C103
C1 — C103

Generators and relations for C103
 G = < a | a103=1 >


Smallest permutation representation of C103
Regular action on 103 points
Generators in S103
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103)

G:=sub<Sym(103)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103)]])

C103 is a maximal subgroup of   D103  C103⋊C3

103 conjugacy classes

class 1 103A···103CX
order1103···103
size11···1

103 irreducible representations

dim11
type+
imageC1C103
kernelC103C1
# reps1102

Matrix representation of C103 in GL1(𝔽619) generated by

71
G:=sub<GL(1,GF(619))| [71] >;

C103 in GAP, Magma, Sage, TeX

C_{103}
% in TeX

G:=Group("C103");
// GroupNames label

G:=SmallGroup(103,1);
// by ID

G=gap.SmallGroup(103,1);
# by ID

G:=PCGroup([1,-103]:ExponentLimit:=1);
// Polycyclic

G:=Group<a|a^103=1>;
// generators/relations

Export

Subgroup lattice of C103 in TeX

׿
×
𝔽