Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C3×C3⋊S3 and Q=C2
dρLabelID
C6×C3⋊S336C6xC3:S3108,43

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊1C2 = C3×S32φ: C2/C1C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3):1C2108,38
(C3×C3⋊S3)⋊2C2 = S3×C3⋊S3φ: C2/C1C2 ⊆ Out C3×C3⋊S318(C3xC3:S3):2C2108,39
(C3×C3⋊S3)⋊3C2 = C324D6φ: C2/C1C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3):3C2108,40

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).1C2 = C3×C32⋊C4φ: C2/C1C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3).1C2108,36
(C3×C3⋊S3).2C2 = C33⋊C4φ: C2/C1C2 ⊆ Out C3×C3⋊S3124(C3xC3:S3).2C2108,37

׿
×
𝔽