Extensions 1→N→G→Q→1 with N=C56 and Q=C2

Direct product G=N×Q with N=C56 and Q=C2
dρLabelID
C2×C56112C2xC56112,22

Semidirect products G=N:Q with N=C56 and Q=C2
extensionφ:Q→Aut NdρLabelID
C561C2 = D56φ: C2/C1C2 ⊆ Aut C56562+C56:1C2112,6
C562C2 = C56⋊C2φ: C2/C1C2 ⊆ Aut C56562C56:2C2112,5
C563C2 = C8×D7φ: C2/C1C2 ⊆ Aut C56562C56:3C2112,3
C564C2 = C8⋊D7φ: C2/C1C2 ⊆ Aut C56562C56:4C2112,4
C565C2 = C7×D8φ: C2/C1C2 ⊆ Aut C56562C56:5C2112,24
C566C2 = C7×SD16φ: C2/C1C2 ⊆ Aut C56562C56:6C2112,25
C567C2 = C7×M4(2)φ: C2/C1C2 ⊆ Aut C56562C56:7C2112,23

Non-split extensions G=N.Q with N=C56 and Q=C2
extensionφ:Q→Aut NdρLabelID
C56.1C2 = Dic28φ: C2/C1C2 ⊆ Aut C561122-C56.1C2112,7
C56.2C2 = C7⋊C16φ: C2/C1C2 ⊆ Aut C561122C56.2C2112,1
C56.3C2 = C7×Q16φ: C2/C1C2 ⊆ Aut C561122C56.3C2112,26

׿
×
𝔽