Copied to
clipboard

G = (C2xC8).103D4order 128 = 27

71st non-split extension by C2xC8 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2xC8).103D4, (C2xD4).25Q8, (C2xD4).201D4, C23.2(C2xQ8), (C22xC8).10C4, (C2xQ8).159D4, C8.46(C22:C4), C23.10(C4:C4), C4.10C42:7C2, C4.122(C4:D4), (C2xM4(2)).13C4, C4.84(C42:C2), (C22xC8).215C22, (C22xC4).663C23, C22.12(C22:Q8), C2.22(C23.7Q8), (C2xM4(2)).156C22, M4(2).8C22.5C2, (C2xC8).12(C2xC4), (C2xC8oD4).2C2, (C2xC8.C4):3C2, (C2xC4).12(C4:C4), (C2xC4).230(C2xD4), C22.21(C2xC4:C4), C4.92(C2xC22:C4), (C22xC4).75(C2xC4), (C2xC4).738(C4oD4), (C2xC4).533(C22xC4), (C2xC4oD4).257C22, SmallGroup(128,545)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — (C2xC8).103D4
C1C2C4C2xC4C22xC4C2xC4oD4C2xC8oD4 — (C2xC8).103D4
C1C2C2xC4 — (C2xC8).103D4
C1C4C2xM4(2) — (C2xC8).103D4
C1C2C2C22xC4 — (C2xC8).103D4

Generators and relations for (C2xC8).103D4
 G = < a,b,c,d | a2=b8=1, c4=b4, d2=ab2, ab=ba, ac=ca, dad-1=ab4, cbc-1=dbd-1=b-1, dcd-1=ab6c3 >

Subgroups: 212 in 126 conjugacy classes, 58 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C2xC8, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4.D4, C4.10D4, C8.C4, C22xC8, C22xC8, C2xM4(2), C2xM4(2), C8oD4, C2xC4oD4, C4.10C42, M4(2).8C22, C2xC8.C4, C2xC8oD4, (C2xC8).103D4
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C22:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C4oD4, C2xC22:C4, C2xC4:C4, C42:C2, C4:D4, C22:Q8, C23.7Q8, (C2xC8).103D4

Smallest permutation representation of (C2xC8).103D4
On 32 points
Generators in S32
(1 20)(2 21)(3 22)(4 23)(5 24)(6 17)(7 18)(8 19)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15 22 28 5 11 18 32)(2 14 23 27 6 10 19 31)(3 13 24 26 7 9 20 30)(4 12 17 25 8 16 21 29)
(1 11 22 28 5 15 18 32)(2 10 23 27 6 14 19 31)(3 9 24 26 7 13 20 30)(4 16 17 25 8 12 21 29)

G:=sub<Sym(32)| (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15,22,28,5,11,18,32)(2,14,23,27,6,10,19,31)(3,13,24,26,7,9,20,30)(4,12,17,25,8,16,21,29), (1,11,22,28,5,15,18,32)(2,10,23,27,6,14,19,31)(3,9,24,26,7,13,20,30)(4,16,17,25,8,12,21,29)>;

G:=Group( (1,20)(2,21)(3,22)(4,23)(5,24)(6,17)(7,18)(8,19)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15,22,28,5,11,18,32)(2,14,23,27,6,10,19,31)(3,13,24,26,7,9,20,30)(4,12,17,25,8,16,21,29), (1,11,22,28,5,15,18,32)(2,10,23,27,6,14,19,31)(3,9,24,26,7,13,20,30)(4,16,17,25,8,12,21,29) );

G=PermutationGroup([[(1,20),(2,21),(3,22),(4,23),(5,24),(6,17),(7,18),(8,19),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15,22,28,5,11,18,32),(2,14,23,27,6,10,19,31),(3,13,24,26,7,9,20,30),(4,12,17,25,8,16,21,29)], [(1,11,22,28,5,15,18,32),(2,10,23,27,6,14,19,31),(3,9,24,26,7,13,20,30),(4,16,17,25,8,12,21,29)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G8A8B8C8D8E···8J8K···8R
order1222222444444488888···88···8
size1122244112224422224···48···8

32 irreducible representations

dim1111111222224
type+++++++-+
imageC1C2C2C2C2C4C4D4D4Q8D4C4oD4(C2xC8).103D4
kernel(C2xC8).103D4C4.10C42M4(2).8C22C2xC8.C4C2xC8oD4C22xC8C2xM4(2)C2xC8C2xD4C2xD4C2xQ8C2xC4C1
# reps1222144412144

Matrix representation of (C2xC8).103D4 in GL4(F17) generated by

01300
4000
9804
99130
,
2000
0200
14090
3009
,
2010
20016
131150
5020
,
2010
15001
131150
3020
G:=sub<GL(4,GF(17))| [0,4,9,9,13,0,8,9,0,0,0,13,0,0,4,0],[2,0,14,3,0,2,0,0,0,0,9,0,0,0,0,9],[2,2,13,5,0,0,1,0,1,0,15,2,0,16,0,0],[2,15,13,3,0,0,1,0,1,0,15,2,0,1,0,0] >;

(C2xC8).103D4 in GAP, Magma, Sage, TeX

(C_2\times C_8)._{103}D_4
% in TeX

G:=Group("(C2xC8).103D4");
// GroupNames label

G:=SmallGroup(128,545);
// by ID

G=gap.SmallGroup(128,545);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,2019,248,2804,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=1,c^4=b^4,d^2=a*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^4,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a*b^6*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<