p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2xC8).2D4, (C2xD4).95D4, (C2xQ8).86D4, C4.66C22wrC2, C4.58(C4:1D4), D8:C22:3C2, C4.10C42:4C2, C23.10(C4oD4), (C22xC8).64C22, C2.22(C23:2D4), C22.25(C4:D4), (C22xC4).715C23, (C2xM4(2)).20C22, (C2xC4).38(C2xD4), (C22xC8):C2:1C2, (C2xC4oD4).52C22, SmallGroup(128,749)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2xC8).2D4
G = < a,b,c,d | a2=b8=d2=1, c4=b4, ab=ba, cac-1=ab4, ad=da, cbc-1=ab-1, dbd=ab5, dcd=b4c3 >
Subgroups: 376 in 175 conjugacy classes, 44 normal (8 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2xC4, C2xC4, D4, Q8, C23, C23, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C22:C8, C22xC8, C2xM4(2), C4oD8, C8:C22, C8.C22, C2xC4oD4, C4.10C42, (C22xC8):C2, D8:C22, (C2xC8).2D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C22wrC2, C4:D4, C4:1D4, C23:2D4, (C2xC8).2D4
Character table of (C2xC8).2D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 8 | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4oD4 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4oD4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ85 | 2ζ8 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ83 | 2ζ87 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ87 | 2ζ83 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ8 | 2ζ85 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 29 20 11 5 25 24 15)(2 16 17 26 6 12 21 30)(3 27 22 9 7 31 18 13)(4 14 19 32 8 10 23 28)
(1 16)(2 29)(3 10)(4 31)(5 12)(6 25)(7 14)(8 27)(9 19)(11 21)(13 23)(15 17)(18 28)(20 30)(22 32)(24 26)
G:=sub<Sym(32)| (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29,20,11,5,25,24,15)(2,16,17,26,6,12,21,30)(3,27,22,9,7,31,18,13)(4,14,19,32,8,10,23,28), (1,16)(2,29)(3,10)(4,31)(5,12)(6,25)(7,14)(8,27)(9,19)(11,21)(13,23)(15,17)(18,28)(20,30)(22,32)(24,26)>;
G:=Group( (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,29,20,11,5,25,24,15)(2,16,17,26,6,12,21,30)(3,27,22,9,7,31,18,13)(4,14,19,32,8,10,23,28), (1,16)(2,29)(3,10)(4,31)(5,12)(6,25)(7,14)(8,27)(9,19)(11,21)(13,23)(15,17)(18,28)(20,30)(22,32)(24,26) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,29,20,11,5,25,24,15),(2,16,17,26,6,12,21,30),(3,27,22,9,7,31,18,13),(4,14,19,32,8,10,23,28)], [(1,16),(2,29),(3,10),(4,31),(5,12),(6,25),(7,14),(8,27),(9,19),(11,21),(13,23),(15,17),(18,28),(20,30),(22,32),(24,26)]])
Matrix representation of (C2xC8).2D4 ►in GL4(F17) generated by
0 | 13 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
15 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 9 |
0 | 0 | 15 | 0 |
0 | 0 | 0 | 2 |
8 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
G:=sub<GL(4,GF(17))| [0,4,0,0,13,0,0,0,0,0,0,13,0,0,4,0],[0,0,1,0,0,0,0,16,0,1,0,0,1,0,0,0],[15,0,0,0,0,2,0,0,0,0,8,0,0,0,0,9],[0,0,8,0,0,0,0,9,15,0,0,0,0,2,0,0] >;
(C2xC8).2D4 in GAP, Magma, Sage, TeX
(C_2\times C_8)._2D_4
% in TeX
G:=Group("(C2xC8).2D4");
// GroupNames label
G:=SmallGroup(128,749);
// by ID
G=gap.SmallGroup(128,749);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,2019,1018,248,2804,718,172,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=d^2=1,c^4=b^4,a*b=b*a,c*a*c^-1=a*b^4,a*d=d*a,c*b*c^-1=a*b^-1,d*b*d=a*b^5,d*c*d=b^4*c^3>;
// generators/relations
Export