p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2).4D4, (C2xC8).43D4, (C2xD4).96D4, (C22xD8):3C2, (C2xQ8).87D4, C4.13C22wrC2, C4.33(C4:1D4), C4.C42:8C2, C2.18(D4.4D4), C23.272(C4oD4), C22.61(C4:D4), C2.23(C23:2D4), (C22xC8).110C22, (C22xC4).716C23, (C22xD4).68C22, (C2xM4(2)).21C22, (C2xC8:C22):4C2, (C2xC4).254(C2xD4), (C2xC4.D4):3C2, (C22xC8):C2:18C2, (C2xC4oD4).53C22, SmallGroup(128,750)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2).4D4
G = < a,b,c,d | a8=b2=d2=1, c4=a4, bab=a5, cac-1=a3b, dad=ab, cbc-1=a4b, bd=db, dcd=a4c3 >
Subgroups: 504 in 191 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, C22:C8, C4.D4, C22xC8, C2xM4(2), C2xM4(2), C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C4.C42, (C22xC8):C2, C2xC4.D4, C22xD8, C2xC8:C22, M4(2).4D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C22wrC2, C4:D4, C4:1D4, C23:2D4, D4.4D4, M4(2).4D4
Character table of M4(2).4D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | complex lifted from C4oD4 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | complex lifted from C4oD4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 24)(2 21)(3 18)(4 23)(5 20)(6 17)(7 22)(8 19)(9 31)(10 28)(11 25)(12 30)(13 27)(14 32)(15 29)(16 26)
(1 25 18 9 5 29 22 13)(2 10 19 30 6 14 23 26)(3 27 20 11 7 31 24 15)(4 12 21 32 8 16 17 28)
(1 32)(2 11)(3 30)(4 9)(5 28)(6 15)(7 26)(8 13)(10 20)(12 18)(14 24)(16 22)(17 29)(19 27)(21 25)(23 31)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,24)(2,21)(3,18)(4,23)(5,20)(6,17)(7,22)(8,19)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26), (1,25,18,9,5,29,22,13)(2,10,19,30,6,14,23,26)(3,27,20,11,7,31,24,15)(4,12,21,32,8,16,17,28), (1,32)(2,11)(3,30)(4,9)(5,28)(6,15)(7,26)(8,13)(10,20)(12,18)(14,24)(16,22)(17,29)(19,27)(21,25)(23,31)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,24)(2,21)(3,18)(4,23)(5,20)(6,17)(7,22)(8,19)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26), (1,25,18,9,5,29,22,13)(2,10,19,30,6,14,23,26)(3,27,20,11,7,31,24,15)(4,12,21,32,8,16,17,28), (1,32)(2,11)(3,30)(4,9)(5,28)(6,15)(7,26)(8,13)(10,20)(12,18)(14,24)(16,22)(17,29)(19,27)(21,25)(23,31) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,24),(2,21),(3,18),(4,23),(5,20),(6,17),(7,22),(8,19),(9,31),(10,28),(11,25),(12,30),(13,27),(14,32),(15,29),(16,26)], [(1,25,18,9,5,29,22,13),(2,10,19,30,6,14,23,26),(3,27,20,11,7,31,24,15),(4,12,21,32,8,16,17,28)], [(1,32),(2,11),(3,30),(4,9),(5,28),(6,15),(7,26),(8,13),(10,20),(12,18),(14,24),(16,22),(17,29),(19,27),(21,25),(23,31)]])
Matrix representation of M4(2).4D4 ►in GL6(F17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 2 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 11 |
0 | 0 | 0 | 0 | 3 | 11 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 14 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 11 | 0 | 0 |
0 | 0 | 3 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 0 | 14 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,16,0,0,16,0,0,0,0,0,2,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,14,0,0,0,0,11,0,0,0,6,3,0,0,0,0,11,11,0,0],[0,13,0,0,0,0,4,0,0,0,0,0,0,0,6,3,0,0,0,0,11,11,0,0,0,0,0,0,0,14,0,0,0,0,11,0] >;
M4(2).4D4 in GAP, Magma, Sage, TeX
M_4(2)._4D_4
% in TeX
G:=Group("M4(2).4D4");
// GroupNames label
G:=SmallGroup(128,750);
// by ID
G=gap.SmallGroup(128,750);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,2019,1018,521,248,2804,718,172,4037,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=d^2=1,c^4=a^4,b*a*b=a^5,c*a*c^-1=a^3*b,d*a*d=a*b,c*b*c^-1=a^4*b,b*d=d*b,d*c*d=a^4*c^3>;
// generators/relations
Export