Copied to
clipboard

G = D8:3D4order 128 = 27

2nd semidirect product of D8 and D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: D8:3D4, C8.4D8, Q16:3D4, C42.143D4, M5(2).4C22, C8oD8:4C2, C4.68(C2xD8), C8.77(C2xD4), C8.C8:2C2, C8:4D4:15C2, C16:C22:4C2, C8.2(C4oD4), (C2xC8).131D4, M5(2):C2:4C2, C2.25(C4:D8), C4.56(C4:D4), (C2xC8).236C23, (C4xC8).163C22, C4oD8.19C22, (C2xD8).48C22, C22.25(C8:C22), C8.C4.19C22, (C2xC4).281(C2xD4), SmallGroup(128,945)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC8 — D8:3D4
C1C2C4C8C2xC8C4oD8C8oD8 — D8:3D4
C1C2C4C2xC8 — D8:3D4
C1C2C2xC4C4xC8 — D8:3D4
C1C2C2C2C2C4C4C2xC8 — D8:3D4

Generators and relations for D8:3D4
 G = < a,b,c,d | a8=b2=c4=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, dbd=a-1b, dcd=c-1 >

Subgroups: 268 in 85 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, Q8, C23, C16, C42, C2xC8, C2xC8, M4(2), D8, D8, SD16, Q16, C2xD4, C4oD4, C4xC8, C4wrC2, C8.C4, M5(2), D16, SD32, C4:1D4, C8oD4, C2xD8, C2xD8, C4oD8, M5(2):C2, C8.C8, C8oD8, C8:4D4, C16:C22, D8:3D4
Quotients: C1, C2, C22, D4, C23, D8, C2xD4, C4oD4, C4:D4, C2xD8, C8:C22, C4:D8, D8:3D4

Character table of D8:3D4

 class 12A2B2C2D2E4A4B4C4D4E8A8B8C8D8E8F8G8H16A16B16C16D
 size 1128161622448222244888888
ρ111111111111111111111111    trivial
ρ2111-1-1-11111-1111111-1-11111    linear of order 2
ρ3111-1111111-1111111-1-1-1-1-1-1    linear of order 2
ρ41111-1-11111111111111-1-1-1-1    linear of order 2
ρ5111-11-111-1-1-1-11-111-11111-1-1    linear of order 2
ρ61111-1111-1-11-11-111-1-1-111-1-1    linear of order 2
ρ711111-111-1-11-11-111-1-1-1-1-111    linear of order 2
ρ8111-1-1111-1-1-1-11-111-111-1-111    linear of order 2
ρ922-2200-2200-20202-20000000    orthogonal lifted from D4
ρ1022200022220-2-2-2-2-2-2000000    orthogonal lifted from D4
ρ1122200022-2-202-22-2-22000000    orthogonal lifted from D4
ρ1222-2-200-220020202-20000000    orthogonal lifted from D4
ρ1322-20002-2000-20-200200-22-22    orthogonal lifted from D8
ρ1422-20002-2000-20-2002002-22-2    orthogonal lifted from D8
ρ1522-20002-200020200-2002-2-22    orthogonal lifted from D8
ρ1622-20002-200020200-200-222-2    orthogonal lifted from D8
ρ1722-2000-220000-20-220-2i2i0000    complex lifted from C4oD4
ρ1822-2000-220000-20-2202i-2i0000    complex lifted from C4oD4
ρ19444000-4-4000000000000000    orthogonal lifted from C8:C22
ρ204-40000002-20-222222-2200000000    orthogonal faithful
ρ214-40000002-2022-22-222200000000    orthogonal faithful
ρ224-4000000-2202222-22-2200000000    orthogonal faithful
ρ234-4000000-220-22-22222200000000    orthogonal faithful

Permutation representations of D8:3D4
On 16 points - transitive group 16T379
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 12)(2 11)(3 10)(4 9)(5 16)(6 15)(7 14)(8 13)
(1 7 5 3)(2 8 6 4)(9 13)(10 14)(11 15)(12 16)
(1 3)(4 8)(5 7)(9 14)(10 13)(11 12)(15 16)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13), (1,7,5,3)(2,8,6,4)(9,13)(10,14)(11,15)(12,16), (1,3)(4,8)(5,7)(9,14)(10,13)(11,12)(15,16)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13), (1,7,5,3)(2,8,6,4)(9,13)(10,14)(11,15)(12,16), (1,3)(4,8)(5,7)(9,14)(10,13)(11,12)(15,16) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,12),(2,11),(3,10),(4,9),(5,16),(6,15),(7,14),(8,13)], [(1,7,5,3),(2,8,6,4),(9,13),(10,14),(11,15),(12,16)], [(1,3),(4,8),(5,7),(9,14),(10,13),(11,12),(15,16)]])

G:=TransitiveGroup(16,379);

Matrix representation of D8:3D4 in GL4(F7) generated by

5051
1521
1625
5511
,
3211
3455
5660
2121
,
6361
0254
0566
0235
,
1104
0344
0656
0665
G:=sub<GL(4,GF(7))| [5,1,1,5,0,5,6,5,5,2,2,1,1,1,5,1],[3,3,5,2,2,4,6,1,1,5,6,2,1,5,0,1],[6,0,0,0,3,2,5,2,6,5,6,3,1,4,6,5],[1,0,0,0,1,3,6,6,0,4,5,6,4,4,6,5] >;

D8:3D4 in GAP, Magma, Sage, TeX

D_8\rtimes_3D_4
% in TeX

G:=Group("D8:3D4");
// GroupNames label

G:=SmallGroup(128,945);
// by ID

G=gap.SmallGroup(128,945);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,512,422,2019,248,1684,438,242,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D8:3D4 in TeX

׿
x
:
Z
F
o
wr
Q
<