Extensions 1→N→G→Q→1 with N=C8oD8 and Q=C2

Direct product G=NxQ with N=C8oD8 and Q=C2
dρLabelID
C2xC8oD832C2xC8oD8128,1685

Semidirect products G=N:Q with N=C8oD8 and Q=C2
extensionφ:Q→Out NdρLabelID
C8oD8:1C2 = C8oD16φ: C2/C1C2 ⊆ Out C8oD8322C8oD8:1C2128,910
C8oD8:2C2 = D16:5C4φ: C2/C1C2 ⊆ Out C8oD8324C8oD8:2C2128,911
C8oD8:3C2 = C8.3D8φ: C2/C1C2 ⊆ Out C8oD8324C8oD8:3C2128,944
C8oD8:4C2 = D8:3D4φ: C2/C1C2 ⊆ Out C8oD8164+C8oD8:4C2128,945
C8oD8:5C2 = C42.283C23φ: C2/C1C2 ⊆ Out C8oD8324C8oD8:5C2128,1687
C8oD8:6C2 = M4(2).51D4φ: C2/C1C2 ⊆ Out C8oD8164C8oD8:6C2128,1688
C8oD8:7C2 = M4(2)oD8φ: C2/C1C2 ⊆ Out C8oD8324C8oD8:7C2128,1689
C8oD8:8C2 = D8oSD16φ: C2/C1C2 ⊆ Out C8oD8324C8oD8:8C2128,2022
C8oD8:9C2 = D8:6D4φ: C2/C1C2 ⊆ Out C8oD8164C8oD8:9C2128,2023
C8oD8:10C2 = D8oD8φ: C2/C1C2 ⊆ Out C8oD8164+C8oD8:10C2128,2024
C8oD8:11C2 = D8oQ16φ: C2/C1C2 ⊆ Out C8oD8324-C8oD8:11C2128,2025

Non-split extensions G=N.Q with N=C8oD8 and Q=C2
extensionφ:Q→Out NdρLabelID
C8oD8.1C2 = C8wrC2φ: C2/C1C2 ⊆ Out C8oD8162C8oD8.1C2128,67
C8oD8.2C2 = C8.32D8φ: C2/C1C2 ⊆ Out C8oD8164C8oD8.2C2128,68
C8oD8.3C2 = D8.C8φ: C2/C1C2 ⊆ Out C8oD8324C8oD8.3C2128,903
C8oD8.4C2 = C8.5D8φ: C2/C1C2 ⊆ Out C8oD8324-C8oD8.4C2128,946
C8oD8.5C2 = D8:3Q8φ: C2/C1C2 ⊆ Out C8oD8164C8oD8.5C2128,962
C8oD8.6C2 = D8.2Q8φ: C2/C1C2 ⊆ Out C8oD8324C8oD8.6C2128,963
C8oD8.7C2 = C16oD8φ: trivial image322C8oD8.7C2128,902

׿
x
:
Z
F
o
wr
Q
<