Copied to
clipboard

G = M5(2).1C4order 128 = 27

1st non-split extension by M5(2) of C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: M5(2).1C4, C23.10Q16, C16.7(C2xC4), C4.91(C2xD8), C8.11(C4:C4), (C2xC8).21Q8, C8.25(C2xQ8), (C2xC4).146D8, (C2xC8).129D4, C8.4Q8:3C2, (C2xC4).25Q16, C4.7(C2.D8), C8.56(C22xC4), C22.2(C2xQ16), (C2xC8).579C23, (C2xC16).18C22, (C22xC4).342D4, (C2xM5(2)).2C2, C22.7(C2.D8), C8.C4.15C22, (C22xC8).241C22, C4.55(C2xC4:C4), (C2xC8).92(C2xC4), C2.16(C2xC2.D8), (C2xC4).59(C4:C4), (C2xC4).767(C2xD4), (C2xC8.C4).25C2, SmallGroup(128,893)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — M5(2).1C4
C1C2C4C2xC4C2xC8C22xC8C2xM5(2) — M5(2).1C4
C1C2C4C8 — M5(2).1C4
C1C4C22xC4C22xC8 — M5(2).1C4
C1C2C2C2C2C4C4C2xC8 — M5(2).1C4

Generators and relations for M5(2).1C4
 G = < a,b,c | a16=b2=1, c4=a8, bab=a9, cac-1=a7, cbc-1=a8b >

Subgroups: 108 in 70 conjugacy classes, 50 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C8, C2xC4, C2xC4, C23, C16, C2xC8, C2xC8, C2xC8, M4(2), C22xC4, C8.C4, C8.C4, C2xC16, M5(2), C22xC8, C2xM4(2), C8.4Q8, C2xC8.C4, C2xM5(2), M5(2).1C4
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C4:C4, D8, Q16, C22xC4, C2xD4, C2xQ8, C2.D8, C2xC4:C4, C2xD8, C2xQ16, C2xC2.D8, M5(2).1C4

Smallest permutation representation of M5(2).1C4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)
(1 31 13 19 9 23 5 27)(2 22 14 26 10 30 6 18)(3 29 15 17 11 21 7 25)(4 20 16 24 12 28 8 32)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31), (1,31,13,19,9,23,5,27)(2,22,14,26,10,30,6,18)(3,29,15,17,11,21,7,25)(4,20,16,24,12,28,8,32)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31), (1,31,13,19,9,23,5,27)(2,22,14,26,10,30,6,18)(3,29,15,17,11,21,7,25)(4,20,16,24,12,28,8,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31)], [(1,31,13,19,9,23,5,27),(2,22,14,26,10,30,6,18),(3,29,15,17,11,21,7,25),(4,20,16,24,12,28,8,32)]])

32 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E8A8B8C8D8E8F8G···8N16A···16H
order12222444448888888···816···16
size11222112222222448···84···4

32 irreducible representations

dim111112222224
type+++++-++--
imageC1C2C2C2C4D4Q8D4D8Q16Q16M5(2).1C4
kernelM5(2).1C4C8.4Q8C2xC8.C4C2xM5(2)M5(2)C2xC8C2xC8C22xC4C2xC4C2xC4C23C1
# reps142181214224

Matrix representation of M5(2).1C4 in GL4(F17) generated by

2161614
13151515
0008
0040
,
1110
01600
00160
0001
,
401010
0001
9131313
0400
G:=sub<GL(4,GF(17))| [2,13,0,0,16,15,0,0,16,15,0,4,14,15,8,0],[1,0,0,0,1,16,0,0,1,0,16,0,0,0,0,1],[4,0,9,0,0,0,13,4,10,0,13,0,10,1,13,0] >;

M5(2).1C4 in GAP, Magma, Sage, TeX

M_5(2)._1C_4
% in TeX

G:=Group("M5(2).1C4");
// GroupNames label

G:=SmallGroup(128,893);
// by ID

G=gap.SmallGroup(128,893);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,288,723,1123,360,172,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^16=b^2=1,c^4=a^8,b*a*b=a^9,c*a*c^-1=a^7,c*b*c^-1=a^8*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<