Copied to
clipboard

G = C2xQ8:6D4order 128 = 27

Direct product of C2 and Q8:6D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xQ8:6D4, C23.24C24, C22.56C25, C42.555C23, C24.493C23, C22.1102+ 1+4, (C2xQ8):43D4, Q8:11(C2xD4), (C4xQ8):92C22, C2.23(D4xC23), (C4xD4):104C22, C4:1D4:47C22, C4:D4:72C22, C4:C4.468C23, (C2xC4).598C24, C4.112(C22xD4), (C2xD4).452C23, C22:C4.83C23, (C2xQ8).485C23, (C2xC42).927C22, (C23xC4).596C22, C22.163(C22xD4), C2.17(C2x2+ 1+4), (C22xC4).1193C23, (C22xD4).422C22, (C22xQ8).514C22, Q8o2(C2xC4:C4), C4:C4o3(C2xQ8), (C2xC4xD4):82C2, C4:3(C2xC4oD4), (C2xC4xQ8):51C2, C4:C4o(C22xQ8), (C2xC4):20(C4oD4), (C2xC4:1D4):25C2, (C2xC4:D4):62C2, (C2xC4).1112(C2xD4), (C22xC4oD4):19C2, (C2xC4oD4):73C22, C2.28(C22xC4oD4), (C2xC4:C4).956C22, C22.158(C2xC4oD4), (C2xC22:C4).539C22, (C2xQ8)o2(C2xC4:C4), (C2xC4:C4)o(C22xQ8), SmallGroup(128,2199)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2xQ8:6D4
C1C2C22C23C22xC4C23xC4C22xC4oD4 — C2xQ8:6D4
C1C22 — C2xQ8:6D4
C1C23 — C2xQ8:6D4
C1C22 — C2xQ8:6D4

Generators and relations for C2xQ8:6D4
 G = < a,b,c,d,e | a2=b4=d4=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=b-1, be=eb, dcd-1=ece=b2c, ede=d-1 >

Subgroups: 1436 in 868 conjugacy classes, 444 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2xC4, C2xC4, D4, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, C2xC42, C2xC22:C4, C2xC4:C4, C2xC4:C4, C4xD4, C4xQ8, C4:D4, C4:1D4, C23xC4, C22xD4, C22xQ8, C2xC4oD4, C2xC4oD4, C2xC4xD4, C2xC4xQ8, C2xC4:D4, C2xC4:1D4, Q8:6D4, C22xC4oD4, C2xQ8:6D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C4oD4, C24, C22xD4, C2xC4oD4, 2+ 1+4, C25, Q8:6D4, D4xC23, C22xC4oD4, C2x2+ 1+4, C2xQ8:6D4

Smallest permutation representation of C2xQ8:6D4
On 64 points
Generators in S64
(1 7)(2 8)(3 5)(4 6)(9 22)(10 23)(11 24)(12 21)(13 49)(14 50)(15 51)(16 52)(17 40)(18 37)(19 38)(20 39)(25 30)(26 31)(27 32)(28 29)(33 54)(34 55)(35 56)(36 53)(41 48)(42 45)(43 46)(44 47)(57 62)(58 63)(59 64)(60 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 3 19)(2 20 4 18)(5 38 7 40)(6 37 8 39)(9 26 11 28)(10 25 12 27)(13 35 15 33)(14 34 16 36)(21 32 23 30)(22 31 24 29)(41 62 43 64)(42 61 44 63)(45 60 47 58)(46 59 48 57)(49 56 51 54)(50 55 52 53)
(1 52 24 64)(2 51 21 63)(3 50 22 62)(4 49 23 61)(5 14 9 57)(6 13 10 60)(7 16 11 59)(8 15 12 58)(17 55 29 43)(18 54 30 42)(19 53 31 41)(20 56 32 44)(25 45 37 33)(26 48 38 36)(27 47 39 35)(28 46 40 34)
(1 47)(2 48)(3 45)(4 46)(5 42)(6 43)(7 44)(8 41)(9 54)(10 55)(11 56)(12 53)(13 29)(14 30)(15 31)(16 32)(17 60)(18 57)(19 58)(20 59)(21 36)(22 33)(23 34)(24 35)(25 50)(26 51)(27 52)(28 49)(37 62)(38 63)(39 64)(40 61)

G:=sub<Sym(64)| (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,49)(14,50)(15,51)(16,52)(17,40)(18,37)(19,38)(20,39)(25,30)(26,31)(27,32)(28,29)(33,54)(34,55)(35,56)(36,53)(41,48)(42,45)(43,46)(44,47)(57,62)(58,63)(59,64)(60,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,3,19)(2,20,4,18)(5,38,7,40)(6,37,8,39)(9,26,11,28)(10,25,12,27)(13,35,15,33)(14,34,16,36)(21,32,23,30)(22,31,24,29)(41,62,43,64)(42,61,44,63)(45,60,47,58)(46,59,48,57)(49,56,51,54)(50,55,52,53), (1,52,24,64)(2,51,21,63)(3,50,22,62)(4,49,23,61)(5,14,9,57)(6,13,10,60)(7,16,11,59)(8,15,12,58)(17,55,29,43)(18,54,30,42)(19,53,31,41)(20,56,32,44)(25,45,37,33)(26,48,38,36)(27,47,39,35)(28,46,40,34), (1,47)(2,48)(3,45)(4,46)(5,42)(6,43)(7,44)(8,41)(9,54)(10,55)(11,56)(12,53)(13,29)(14,30)(15,31)(16,32)(17,60)(18,57)(19,58)(20,59)(21,36)(22,33)(23,34)(24,35)(25,50)(26,51)(27,52)(28,49)(37,62)(38,63)(39,64)(40,61)>;

G:=Group( (1,7)(2,8)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,49)(14,50)(15,51)(16,52)(17,40)(18,37)(19,38)(20,39)(25,30)(26,31)(27,32)(28,29)(33,54)(34,55)(35,56)(36,53)(41,48)(42,45)(43,46)(44,47)(57,62)(58,63)(59,64)(60,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,3,19)(2,20,4,18)(5,38,7,40)(6,37,8,39)(9,26,11,28)(10,25,12,27)(13,35,15,33)(14,34,16,36)(21,32,23,30)(22,31,24,29)(41,62,43,64)(42,61,44,63)(45,60,47,58)(46,59,48,57)(49,56,51,54)(50,55,52,53), (1,52,24,64)(2,51,21,63)(3,50,22,62)(4,49,23,61)(5,14,9,57)(6,13,10,60)(7,16,11,59)(8,15,12,58)(17,55,29,43)(18,54,30,42)(19,53,31,41)(20,56,32,44)(25,45,37,33)(26,48,38,36)(27,47,39,35)(28,46,40,34), (1,47)(2,48)(3,45)(4,46)(5,42)(6,43)(7,44)(8,41)(9,54)(10,55)(11,56)(12,53)(13,29)(14,30)(15,31)(16,32)(17,60)(18,57)(19,58)(20,59)(21,36)(22,33)(23,34)(24,35)(25,50)(26,51)(27,52)(28,49)(37,62)(38,63)(39,64)(40,61) );

G=PermutationGroup([[(1,7),(2,8),(3,5),(4,6),(9,22),(10,23),(11,24),(12,21),(13,49),(14,50),(15,51),(16,52),(17,40),(18,37),(19,38),(20,39),(25,30),(26,31),(27,32),(28,29),(33,54),(34,55),(35,56),(36,53),(41,48),(42,45),(43,46),(44,47),(57,62),(58,63),(59,64),(60,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,3,19),(2,20,4,18),(5,38,7,40),(6,37,8,39),(9,26,11,28),(10,25,12,27),(13,35,15,33),(14,34,16,36),(21,32,23,30),(22,31,24,29),(41,62,43,64),(42,61,44,63),(45,60,47,58),(46,59,48,57),(49,56,51,54),(50,55,52,53)], [(1,52,24,64),(2,51,21,63),(3,50,22,62),(4,49,23,61),(5,14,9,57),(6,13,10,60),(7,16,11,59),(8,15,12,58),(17,55,29,43),(18,54,30,42),(19,53,31,41),(20,56,32,44),(25,45,37,33),(26,48,38,36),(27,47,39,35),(28,46,40,34)], [(1,47),(2,48),(3,45),(4,46),(5,42),(6,43),(7,44),(8,41),(9,54),(10,55),(11,56),(12,53),(13,29),(14,30),(15,31),(16,32),(17,60),(18,57),(19,58),(20,59),(21,36),(22,33),(23,34),(24,35),(25,50),(26,51),(27,52),(28,49),(37,62),(38,63),(39,64),(40,61)]])

50 conjugacy classes

class 1 2A···2G2H···2S4A···4X4Y···4AD
order12···22···24···44···4
size11···14···42···24···4

50 irreducible representations

dim1111111224
type+++++++++
imageC1C2C2C2C2C2C2D4C4oD42+ 1+4
kernelC2xQ8:6D4C2xC4xD4C2xC4xQ8C2xC4:D4C2xC4:1D4Q8:6D4C22xC4oD4C2xQ8C2xC4C22
# reps13163162882

Matrix representation of C2xQ8:6D4 in GL5(F5)

40000
04000
00400
00040
00004
,
10000
01000
00100
00024
00003
,
40000
04000
00400
00030
00022
,
10000
00100
04000
00043
00011
,
40000
00100
01000
00012
00004

G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,4,3],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,3,2,0,0,0,0,2],[1,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,4,1,0,0,0,3,1],[4,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,4] >;

C2xQ8:6D4 in GAP, Magma, Sage, TeX

C_2\times Q_8\rtimes_6D_4
% in TeX

G:=Group("C2xQ8:6D4");
// GroupNames label

G:=SmallGroup(128,2199);
// by ID

G=gap.SmallGroup(128,2199);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,184,570,136]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^4=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<