Copied to
clipboard

G = C3xD25order 150 = 2·3·52

Direct product of C3 and D25

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C3xD25, C25:C6, C75:2C2, C15.2D5, C5.(C3xD5), SmallGroup(150,2)

Series: Derived Chief Lower central Upper central

C1C25 — C3xD25
C1C5C25C75 — C3xD25
C25 — C3xD25
C1C3

Generators and relations for C3xD25
 G = < a,b,c | a3=b25=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 68 in 12 conjugacy classes, 8 normal (all characteristic)
Quotients: C1, C2, C3, C6, D5, C3xD5, D25, C3xD25
25C2
25C6
5D5
5C3xD5

Smallest permutation representation of C3xD25
On 75 points
Generators in S75
(1 52 31)(2 53 32)(3 54 33)(4 55 34)(5 56 35)(6 57 36)(7 58 37)(8 59 38)(9 60 39)(10 61 40)(11 62 41)(12 63 42)(13 64 43)(14 65 44)(15 66 45)(16 67 46)(17 68 47)(18 69 48)(19 70 49)(20 71 50)(21 72 26)(22 73 27)(23 74 28)(24 75 29)(25 51 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(26 35)(27 34)(28 33)(29 32)(30 31)(36 50)(37 49)(38 48)(39 47)(40 46)(41 45)(42 44)(51 52)(53 75)(54 74)(55 73)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)

G:=sub<Sym(75)| (1,52,31)(2,53,32)(3,54,33)(4,55,34)(5,56,35)(6,57,36)(7,58,37)(8,59,38)(9,60,39)(10,61,40)(11,62,41)(12,63,42)(13,64,43)(14,65,44)(15,66,45)(16,67,46)(17,68,47)(18,69,48)(19,70,49)(20,71,50)(21,72,26)(22,73,27)(23,74,28)(24,75,29)(25,51,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,35)(27,34)(28,33)(29,32)(30,31)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(51,52)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)>;

G:=Group( (1,52,31)(2,53,32)(3,54,33)(4,55,34)(5,56,35)(6,57,36)(7,58,37)(8,59,38)(9,60,39)(10,61,40)(11,62,41)(12,63,42)(13,64,43)(14,65,44)(15,66,45)(16,67,46)(17,68,47)(18,69,48)(19,70,49)(20,71,50)(21,72,26)(22,73,27)(23,74,28)(24,75,29)(25,51,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,35)(27,34)(28,33)(29,32)(30,31)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(51,52)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65) );

G=PermutationGroup([[(1,52,31),(2,53,32),(3,54,33),(4,55,34),(5,56,35),(6,57,36),(7,58,37),(8,59,38),(9,60,39),(10,61,40),(11,62,41),(12,63,42),(13,64,43),(14,65,44),(15,66,45),(16,67,46),(17,68,47),(18,69,48),(19,70,49),(20,71,50),(21,72,26),(22,73,27),(23,74,28),(24,75,29),(25,51,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(26,35),(27,34),(28,33),(29,32),(30,31),(36,50),(37,49),(38,48),(39,47),(40,46),(41,45),(42,44),(51,52),(53,75),(54,74),(55,73),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65)]])

C3xD25 is a maximal subgroup of   C75:C4

42 conjugacy classes

class 1  2 3A3B5A5B6A6B15A15B15C15D25A···25J75A···75T
order123355661515151525···2575···75
size1251122252522222···22···2

42 irreducible representations

dim11112222
type++++
imageC1C2C3C6D5C3xD5D25C3xD25
kernelC3xD25C75D25C25C15C5C3C1
# reps1122241020

Matrix representation of C3xD25 in GL2(F151) generated by

320
032
,
7136
115120
,
7136
1180
G:=sub<GL(2,GF(151))| [32,0,0,32],[71,115,36,120],[71,11,36,80] >;

C3xD25 in GAP, Magma, Sage, TeX

C_3\times D_{25}
% in TeX

G:=Group("C3xD25");
// GroupNames label

G:=SmallGroup(150,2);
// by ID

G=gap.SmallGroup(150,2);
# by ID

G:=PCGroup([4,-2,-3,-5,-5,650,250,1923]);
// Polycyclic

G:=Group<a,b,c|a^3=b^25=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3xD25 in TeX

׿
x
:
Z
F
o
wr
Q
<