Copied to
clipboard

G = C4xC36order 144 = 24·32

Abelian group of type [4,36]

direct product, abelian, monomial, 2-elementary

Aliases: C4xC36, SmallGroup(144,20)

Series: Derived Chief Lower central Upper central

C1 — C4xC36
C1C3C6C2xC6C2xC18C2xC36 — C4xC36
C1 — C4xC36
C1 — C4xC36

Generators and relations for C4xC36
 G = < a,b | a4=b36=1, ab=ba >

Subgroups: 45, all normal (9 characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, C9, C12, C2xC6, C42, C18, C2xC12, C36, C2xC18, C4xC12, C2xC36, C4xC36

Smallest permutation representation of C4xC36
Regular action on 144 points
Generators in S144
(1 141 93 38)(2 142 94 39)(3 143 95 40)(4 144 96 41)(5 109 97 42)(6 110 98 43)(7 111 99 44)(8 112 100 45)(9 113 101 46)(10 114 102 47)(11 115 103 48)(12 116 104 49)(13 117 105 50)(14 118 106 51)(15 119 107 52)(16 120 108 53)(17 121 73 54)(18 122 74 55)(19 123 75 56)(20 124 76 57)(21 125 77 58)(22 126 78 59)(23 127 79 60)(24 128 80 61)(25 129 81 62)(26 130 82 63)(27 131 83 64)(28 132 84 65)(29 133 85 66)(30 134 86 67)(31 135 87 68)(32 136 88 69)(33 137 89 70)(34 138 90 71)(35 139 91 72)(36 140 92 37)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,141,93,38)(2,142,94,39)(3,143,95,40)(4,144,96,41)(5,109,97,42)(6,110,98,43)(7,111,99,44)(8,112,100,45)(9,113,101,46)(10,114,102,47)(11,115,103,48)(12,116,104,49)(13,117,105,50)(14,118,106,51)(15,119,107,52)(16,120,108,53)(17,121,73,54)(18,122,74,55)(19,123,75,56)(20,124,76,57)(21,125,77,58)(22,126,78,59)(23,127,79,60)(24,128,80,61)(25,129,81,62)(26,130,82,63)(27,131,83,64)(28,132,84,65)(29,133,85,66)(30,134,86,67)(31,135,87,68)(32,136,88,69)(33,137,89,70)(34,138,90,71)(35,139,91,72)(36,140,92,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (1,141,93,38)(2,142,94,39)(3,143,95,40)(4,144,96,41)(5,109,97,42)(6,110,98,43)(7,111,99,44)(8,112,100,45)(9,113,101,46)(10,114,102,47)(11,115,103,48)(12,116,104,49)(13,117,105,50)(14,118,106,51)(15,119,107,52)(16,120,108,53)(17,121,73,54)(18,122,74,55)(19,123,75,56)(20,124,76,57)(21,125,77,58)(22,126,78,59)(23,127,79,60)(24,128,80,61)(25,129,81,62)(26,130,82,63)(27,131,83,64)(28,132,84,65)(29,133,85,66)(30,134,86,67)(31,135,87,68)(32,136,88,69)(33,137,89,70)(34,138,90,71)(35,139,91,72)(36,140,92,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,141,93,38),(2,142,94,39),(3,143,95,40),(4,144,96,41),(5,109,97,42),(6,110,98,43),(7,111,99,44),(8,112,100,45),(9,113,101,46),(10,114,102,47),(11,115,103,48),(12,116,104,49),(13,117,105,50),(14,118,106,51),(15,119,107,52),(16,120,108,53),(17,121,73,54),(18,122,74,55),(19,123,75,56),(20,124,76,57),(21,125,77,58),(22,126,78,59),(23,127,79,60),(24,128,80,61),(25,129,81,62),(26,130,82,63),(27,131,83,64),(28,132,84,65),(29,133,85,66),(30,134,86,67),(31,135,87,68),(32,136,88,69),(33,137,89,70),(34,138,90,71),(35,139,91,72),(36,140,92,37)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

C4xC36 is a maximal subgroup of
C42.D9  C36:C8  C42:4D9  C36:2Q8  C36.6Q8  C42:2D9  C42:6D9  C42:7D9  C42:3D9  C42:C27  C42:3- 1+2

144 conjugacy classes

class 1 2A2B2C3A3B4A···4L6A···6F9A···9F12A···12X18A···18R36A···36BT
order1222334···46···69···912···1218···1836···36
size1111111···11···11···11···11···11···1

144 irreducible representations

dim111111111
type++
imageC1C2C3C4C6C9C12C18C36
kernelC4xC36C2xC36C4xC12C36C2xC12C42C12C2xC4C4
# reps1321266241872

Matrix representation of C4xC36 in GL2(F37) generated by

60
01
,
290
02
G:=sub<GL(2,GF(37))| [6,0,0,1],[29,0,0,2] >;

C4xC36 in GAP, Magma, Sage, TeX

C_4\times C_{36}
% in TeX

G:=Group("C4xC36");
// GroupNames label

G:=SmallGroup(144,20);
// by ID

G=gap.SmallGroup(144,20);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-3,72,151,230]);
// Polycyclic

G:=Group<a,b|a^4=b^36=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C4xC36 in TeX

׿
x
:
Z
F
o
wr
Q
<