Copied to
clipboard

G = Dic3:D6order 144 = 24·32

2nd semidirect product of Dic3 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, rational

Aliases: D6:3D6, Dic3:2D6, C62:2C22, C3:S3:3D4, C22:3S32, C3:3(S3xD4), (C2xC6):5D6, C3:D4:2S3, C32:7(C2xD4), C3:D12:6C2, (S3xC6):4C22, C6.D6:3C2, C6.18(C22xS3), (C3xC6).18C23, (C3xDic3):2C22, (C2xS32):4C2, C2.18(C2xS32), (C3xC3:D4):4C2, (C22xC3:S3):2C2, (C2xC3:S3):4C22, Hol(Dic3), SmallGroup(144,154)

Series: Derived Chief Lower central Upper central

C1C3xC6 — Dic3:D6
C1C3C32C3xC6S3xC6C2xS32 — Dic3:D6
C32C3xC6 — Dic3:D6
C1C2C22

Generators and relations for Dic3:D6
 G = < a,b,c,d | a6=c6=d2=1, b2=a3, bab-1=dad=a-1, ac=ca, cbc-1=a3b, bd=db, dcd=c-1 >

Subgroups: 496 in 124 conjugacy classes, 34 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3:S3, C3:S3, C3xC6, C3xC6, C4xS3, D12, C3:D4, C3:D4, C3xD4, C22xS3, C3xDic3, S32, S3xC6, C2xC3:S3, C2xC3:S3, C62, S3xD4, C6.D6, C3:D12, C3xC3:D4, C2xS32, C22xC3:S3, Dic3:D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C22xS3, S32, S3xD4, C2xS32, Dic3:D6

Character table of Dic3:D6

 class 12A2B2C2D2E2F2G3A3B3C4A4B6A6B6C6D6E6F6G6H6I12A12B
 size 11266991822466224444412121212
ρ1111111111111111111111111    trivial
ρ211-1-11-1-111111-1111-1-1-1-1-11-11    linear of order 2
ρ311-1-1-111-111111111-1-1-1-1-1-111    linear of order 2
ρ41111-1-1-1-11111-111111111-1-11    linear of order 2
ρ5111-11-1-1-1111-111111111-111-1    linear of order 2
ρ611-11111-1111-1-1111-1-1-1-111-1-1    linear of order 2
ρ711-11-1-1-11111-11111-1-1-1-11-11-1    linear of order 2
ρ8111-1-1111111-1-11111111-1-1-1-1    linear of order 2
ρ9222-200002-1-1-20-12-1-1-12-11001    orthogonal lifted from D6
ρ1022-20-2000-12-1022-1-11-21101-10    orthogonal lifted from D6
ρ1122-2-200002-1-120-12-111-21100-1    orthogonal lifted from D6
ρ1222-202000-12-10-22-1-11-2110-110    orthogonal lifted from D6
ρ132-2000-22022200-2-2-200000000    orthogonal lifted from D4
ρ142-20002-2022200-2-2-200000000    orthogonal lifted from D4
ρ152220-2000-12-10-22-1-1-12-1-10110    orthogonal lifted from D6
ρ1622-2200002-1-1-20-12-111-21-1001    orthogonal lifted from D6
ρ1722202000-12-1022-1-1-12-1-10-1-10    orthogonal lifted from S3
ρ18222200002-1-120-12-1-1-12-1-100-1    orthogonal lifted from S3
ρ194-4000000-2-210022-1-30030000    orthogonal faithful
ρ204-4000000-24-200-42200000000    orthogonal lifted from S3xD4
ρ2144-400000-2-2100-2-21-122-10000    orthogonal lifted from C2xS32
ρ224-4000000-2-210022-1300-30000    orthogonal faithful
ρ234-40000004-2-2002-4200000000    orthogonal lifted from S3xD4
ρ2444400000-2-2100-2-211-2-210000    orthogonal lifted from S32

Permutation representations of Dic3:D6
On 12 points - transitive group 12T81
Generators in S12
(1 2 3 4 5 6)(7 8 9 10 11 12)
(1 8 4 11)(2 7 5 10)(3 12 6 9)
(1 5 3)(2 6 4)(7 12 11 10 9 8)
(1 3)(4 6)(8 12)(9 11)

G:=sub<Sym(12)| (1,2,3,4,5,6)(7,8,9,10,11,12), (1,8,4,11)(2,7,5,10)(3,12,6,9), (1,5,3)(2,6,4)(7,12,11,10,9,8), (1,3)(4,6)(8,12)(9,11)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12), (1,8,4,11)(2,7,5,10)(3,12,6,9), (1,5,3)(2,6,4)(7,12,11,10,9,8), (1,3)(4,6)(8,12)(9,11) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12)], [(1,8,4,11),(2,7,5,10),(3,12,6,9)], [(1,5,3),(2,6,4),(7,12,11,10,9,8)], [(1,3),(4,6),(8,12),(9,11)]])

G:=TransitiveGroup(12,81);

On 24 points - transitive group 24T269
Generators in S24
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 20 4 23)(2 19 5 22)(3 24 6 21)(7 14 10 17)(8 13 11 16)(9 18 12 15)
(1 11 3 7 5 9)(2 12 4 8 6 10)(13 24 17 22 15 20)(14 19 18 23 16 21)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 16)(14 15)(17 18)(19 22)(20 21)(23 24)

G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,20,4,23)(2,19,5,22)(3,24,6,21)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,11,3,7,5,9)(2,12,4,8,6,10)(13,24,17,22,15,20)(14,19,18,23,16,21), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,16)(14,15)(17,18)(19,22)(20,21)(23,24)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,20,4,23)(2,19,5,22)(3,24,6,21)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,11,3,7,5,9)(2,12,4,8,6,10)(13,24,17,22,15,20)(14,19,18,23,16,21), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,16)(14,15)(17,18)(19,22)(20,21)(23,24) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,20,4,23),(2,19,5,22),(3,24,6,21),(7,14,10,17),(8,13,11,16),(9,18,12,15)], [(1,11,3,7,5,9),(2,12,4,8,6,10),(13,24,17,22,15,20),(14,19,18,23,16,21)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,16),(14,15),(17,18),(19,22),(20,21),(23,24)]])

G:=TransitiveGroup(24,269);

On 24 points - transitive group 24T270
Generators in S24
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 8 4 11)(2 7 5 10)(3 12 6 9)(13 23 16 20)(14 22 17 19)(15 21 18 24)
(1 5 3)(2 6 4)(7 12 11 10 9 8)(13 18 17 16 15 14)(19 23 21)(20 24 22)
(1 19)(2 24)(3 23)(4 22)(5 21)(6 20)(7 15)(8 14)(9 13)(10 18)(11 17)(12 16)

G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,23,16,20)(14,22,17,19)(15,21,18,24), (1,5,3)(2,6,4)(7,12,11,10,9,8)(13,18,17,16,15,14)(19,23,21)(20,24,22), (1,19)(2,24)(3,23)(4,22)(5,21)(6,20)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,23,16,20)(14,22,17,19)(15,21,18,24), (1,5,3)(2,6,4)(7,12,11,10,9,8)(13,18,17,16,15,14)(19,23,21)(20,24,22), (1,19)(2,24)(3,23)(4,22)(5,21)(6,20)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,8,4,11),(2,7,5,10),(3,12,6,9),(13,23,16,20),(14,22,17,19),(15,21,18,24)], [(1,5,3),(2,6,4),(7,12,11,10,9,8),(13,18,17,16,15,14),(19,23,21),(20,24,22)], [(1,19),(2,24),(3,23),(4,22),(5,21),(6,20),(7,15),(8,14),(9,13),(10,18),(11,17),(12,16)]])

G:=TransitiveGroup(24,270);

On 24 points - transitive group 24T271
Generators in S24
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 20 4 23)(2 19 5 22)(3 24 6 21)(7 14 10 17)(8 13 11 16)(9 18 12 15)
(1 11 3 7 5 9)(2 12 4 8 6 10)(13 24 17 22 15 20)(14 19 18 23 16 21)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10)(13 19)(14 24)(15 23)(16 22)(17 21)(18 20)

G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,20,4,23)(2,19,5,22)(3,24,6,21)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,11,3,7,5,9)(2,12,4,8,6,10)(13,24,17,22,15,20)(14,19,18,23,16,21), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,19)(14,24)(15,23)(16,22)(17,21)(18,20)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,20,4,23)(2,19,5,22)(3,24,6,21)(7,14,10,17)(8,13,11,16)(9,18,12,15), (1,11,3,7,5,9)(2,12,4,8,6,10)(13,24,17,22,15,20)(14,19,18,23,16,21), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,19)(14,24)(15,23)(16,22)(17,21)(18,20) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,20,4,23),(2,19,5,22),(3,24,6,21),(7,14,10,17),(8,13,11,16),(9,18,12,15)], [(1,11,3,7,5,9),(2,12,4,8,6,10),(13,24,17,22,15,20),(14,19,18,23,16,21)], [(1,9),(2,8),(3,7),(4,12),(5,11),(6,10),(13,19),(14,24),(15,23),(16,22),(17,21),(18,20)]])

G:=TransitiveGroup(24,271);

Dic3:D6 is a maximal subgroup of
C62.2D4  C62.9D4  D6wrC2  C62:D4  D12:23D6  D12:27D6  S32xD4  Dic6:12D6  D12:13D6  C32:2+ 1+4  D18:D6  C62:D6  C62:5D6  D6:4S32  (S3xC6):D6  C3:S3:4D12  C62:23D6  C62:24D6  C62:10D6
Dic3:D6 is a maximal quotient of
C62.10C23  C62.23C23  C62.35C23  C62.51C23  C62.53C23  D6:3Dic6  C62.67C23  Dic3:3D12  C62.82C23  C62.83C23  C62.91C23  D6:5D12  D12:D6  D12.D6  Dic6:D6  Dic6.D6  D12.8D6  D12:5D6  D12.9D6  D12.10D6  Dic6.9D6  Dic6.10D6  D12.14D6  D12.15D6  C62.95C23  C62.100C23  C62.113C23  C62.115C23  C62.116C23  C62.117C23  C62.121C23  C62:7D4  C62:8D4  C62:4Q8  C62.125C23  D18:D6  C62:2D6  D6:4S32  (S3xC6):D6  C3:S3:4D12  C62:23D6  C62:24D6

Polynomial with Galois group Dic3:D6 over Q
actionf(x)Disc(f)
12T81x12-24x10+216x8-902x6+1752x4-1368x2+200239·312·56·76·236

Matrix representation of Dic3:D6 in GL4(Z) generated by

1100
-1000
000-1
0011
,
0010
0001
-1000
0-100
,
-1-100
1000
0011
00-10
,
1100
0-100
0011
000-1
G:=sub<GL(4,Integers())| [1,-1,0,0,1,0,0,0,0,0,0,1,0,0,-1,1],[0,0,-1,0,0,0,0,-1,1,0,0,0,0,1,0,0],[-1,1,0,0,-1,0,0,0,0,0,1,-1,0,0,1,0],[1,0,0,0,1,-1,0,0,0,0,1,0,0,0,1,-1] >;

Dic3:D6 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes D_6
% in TeX

G:=Group("Dic3:D6");
// GroupNames label

G:=SmallGroup(144,154);
// by ID

G=gap.SmallGroup(144,154);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,218,116,490,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^6=d^2=1,b^2=a^3,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of Dic3:D6 in TeX

׿
x
:
Z
F
o
wr
Q
<