Copied to
clipboard

G = S3xD4order 48 = 24·3

Direct product of S3 and D4

direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary

Aliases: S3xD4, C4:1D6, C12:C22, D12:3C2, C22:2D6, D6:2C22, C6.5C23, Dic3:1C22, C3:2(C2xD4), (C2xC6):C22, (C4xS3):1C2, (C3xD4):2C2, C3:D4:1C2, (C22xS3):2C2, C2.6(C22xS3), Aut(D12), Hol(C12), SmallGroup(48,38)

Series: Derived Chief Lower central Upper central

C1C6 — S3xD4
C1C3C6D6C22xS3 — S3xD4
C3C6 — S3xD4
C1C2D4

Generators and relations for S3xD4
 G = < a,b,c,d | a3=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 120 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C2xC4, D4, D4, C23, Dic3, C12, D6, D6, D6, C2xC6, C2xD4, C4xS3, D12, C3:D4, C3xD4, C22xS3, S3xD4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C22xS3, S3xD4

Character table of S3xD4

 class 12A2B2C2D2E2F2G34A4B6A6B6C12
 size 112233662262444
ρ1111111111111111    trivial
ρ21111-1-1-1-111-11111    linear of order 2
ρ3111-1111-11-1-11-11-1    linear of order 2
ρ4111-1-1-1-111-111-11-1    linear of order 2
ρ511-11-1-11-11-1111-1-1    linear of order 2
ρ611-1111-111-1-111-1-1    linear of order 2
ρ711-1-1-1-11111-11-1-11    linear of order 2
ρ811-1-111-1-11111-1-11    linear of order 2
ρ922-220000-1-20-1-111    orthogonal lifted from D6
ρ102-2002-200200-2000    orthogonal lifted from D4
ρ1122220000-120-1-1-1-1    orthogonal lifted from S3
ρ12222-20000-1-20-11-11    orthogonal lifted from D6
ρ1322-2-20000-120-111-1    orthogonal lifted from D6
ρ142-200-2200200-2000    orthogonal lifted from D4
ρ154-4000000-2002000    orthogonal faithful

Permutation representations of S3xD4
On 12 points - transitive group 12T28
Generators in S12
(1 9 8)(2 10 5)(3 11 6)(4 12 7)
(5 10)(6 11)(7 12)(8 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)
(2 4)(5 7)(10 12)

G:=sub<Sym(12)| (1,9,8)(2,10,5)(3,11,6)(4,12,7), (5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12), (2,4)(5,7)(10,12)>;

G:=Group( (1,9,8)(2,10,5)(3,11,6)(4,12,7), (5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12), (2,4)(5,7)(10,12) );

G=PermutationGroup([[(1,9,8),(2,10,5),(3,11,6),(4,12,7)], [(5,10),(6,11),(7,12),(8,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)], [(2,4),(5,7),(10,12)]])

G:=TransitiveGroup(12,28);

On 24 points - transitive group 24T52
Generators in S24
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 10 23)(6 11 24)(7 12 21)(8 9 22)
(1 24)(2 21)(3 22)(4 23)(5 15)(6 16)(7 13)(8 14)(9 19)(10 20)(11 17)(12 18)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(5 7)(10 12)(13 15)(18 20)(21 23)

G:=sub<Sym(24)| (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,19)(10,20)(11,17)(12,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23)>;

G:=Group( (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,10,23)(6,11,24)(7,12,21)(8,9,22), (1,24)(2,21)(3,22)(4,23)(5,15)(6,16)(7,13)(8,14)(9,19)(10,20)(11,17)(12,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23) );

G=PermutationGroup([[(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,10,23),(6,11,24),(7,12,21),(8,9,22)], [(1,24),(2,21),(3,22),(4,23),(5,15),(6,16),(7,13),(8,14),(9,19),(10,20),(11,17),(12,18)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(5,7),(10,12),(13,15),(18,20),(21,23)]])

G:=TransitiveGroup(24,52);

On 24 points - transitive group 24T53
Generators in S24
(1 20 21)(2 17 22)(3 18 23)(4 19 24)(5 10 14)(6 11 15)(7 12 16)(8 9 13)
(1 3)(2 4)(5 7)(6 8)(9 15)(10 16)(11 13)(12 14)(17 24)(18 21)(19 22)(20 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)

G:=sub<Sym(24)| (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;

G:=Group( (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );

G=PermutationGroup([[(1,20,21),(2,17,22),(3,18,23),(4,19,24),(5,10,14),(6,11,15),(7,12,16),(8,9,13)], [(1,3),(2,4),(5,7),(6,8),(9,15),(10,16),(11,13),(12,14),(17,24),(18,21),(19,22),(20,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])

G:=TransitiveGroup(24,53);

On 24 points - transitive group 24T54
Generators in S24
(1 20 21)(2 17 22)(3 18 23)(4 19 24)(5 10 14)(6 11 15)(7 12 16)(8 9 13)
(1 6)(2 7)(3 8)(4 5)(9 23)(10 24)(11 21)(12 22)(13 18)(14 19)(15 20)(16 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)

G:=sub<Sym(24)| (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;

G:=Group( (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );

G=PermutationGroup([[(1,20,21),(2,17,22),(3,18,23),(4,19,24),(5,10,14),(6,11,15),(7,12,16),(8,9,13)], [(1,6),(2,7),(3,8),(4,5),(9,23),(10,24),(11,21),(12,22),(13,18),(14,19),(15,20),(16,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])

G:=TransitiveGroup(24,54);

S3xD4 is a maximal subgroup of
D8:S3  Q8:3D6  D4:6D6  D4oD12  D6:D6  Dic3:D6  D4.4S4  C20:D6  D10:D6  C28:D6  D6:D14  C4:S5  C4.3S5  C22:S5
S3xD4 is a maximal quotient of
Dic3.D4  Dic3:4D4  D6:D4  C23.9D6  Dic3:D4  C23.11D6  C12:Q8  Dic3:5D4  D6.D4  C12:D4  D6:Q8  D8:S3  D8:3S3  Q8:3D6  D4.D6  Q8.7D6  Q16:S3  D24:C2  C23:2D6  D6:3D4  C23.14D6  C12:3D4  D6:D6  Dic3:D6  C20:D6  D10:D6  C28:D6  D6:D14

Polynomial with Galois group S3xD4 over Q
actionf(x)Disc(f)
12T28x12-4x6-5x3-1-318·56·113

Matrix representation of S3xD4 in GL4(Z) generated by

-1-100
1000
00-1-1
0010
,
-1000
1100
00-10
0011
,
00-10
000-1
1000
0100
,
1000
0100
00-10
000-1
G:=sub<GL(4,Integers())| [-1,1,0,0,-1,0,0,0,0,0,-1,1,0,0,-1,0],[-1,1,0,0,0,1,0,0,0,0,-1,1,0,0,0,1],[0,0,1,0,0,0,0,1,-1,0,0,0,0,-1,0,0],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1] >;

S3xD4 in GAP, Magma, Sage, TeX

S_3\times D_4
% in TeX

G:=Group("S3xD4");
// GroupNames label

G:=SmallGroup(48,38);
// by ID

G=gap.SmallGroup(48,38);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-3,97,804]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of S3xD4 in TeX

׿
x
:
Z
F
o
wr
Q
<