extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3:D4) = C3:D24 | φ: C3:D4/Dic3 → C2 ⊆ Aut C6 | 24 | 4+ | C6.1(C3:D4) | 144,57 |
C6.2(C3:D4) = D12.S3 | φ: C3:D4/Dic3 → C2 ⊆ Aut C6 | 48 | 4- | C6.2(C3:D4) | 144,59 |
C6.3(C3:D4) = C32:5SD16 | φ: C3:D4/Dic3 → C2 ⊆ Aut C6 | 24 | 4+ | C6.3(C3:D4) | 144,60 |
C6.4(C3:D4) = C32:3Q16 | φ: C3:D4/Dic3 → C2 ⊆ Aut C6 | 48 | 4- | C6.4(C3:D4) | 144,62 |
C6.5(C3:D4) = C6.D12 | φ: C3:D4/Dic3 → C2 ⊆ Aut C6 | 24 | | C6.5(C3:D4) | 144,65 |
C6.6(C3:D4) = Dic3:Dic3 | φ: C3:D4/Dic3 → C2 ⊆ Aut C6 | 48 | | C6.6(C3:D4) | 144,66 |
C6.7(C3:D4) = C32:2D8 | φ: C3:D4/D6 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(C3:D4) | 144,56 |
C6.8(C3:D4) = Dic6:S3 | φ: C3:D4/D6 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(C3:D4) | 144,58 |
C6.9(C3:D4) = C32:2Q16 | φ: C3:D4/D6 → C2 ⊆ Aut C6 | 48 | 4 | C6.9(C3:D4) | 144,61 |
C6.10(C3:D4) = D6:Dic3 | φ: C3:D4/D6 → C2 ⊆ Aut C6 | 48 | | C6.10(C3:D4) | 144,64 |
C6.11(C3:D4) = C62.C22 | φ: C3:D4/D6 → C2 ⊆ Aut C6 | 48 | | C6.11(C3:D4) | 144,67 |
C6.12(C3:D4) = Dic9:C4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.12(C3:D4) | 144,12 |
C6.13(C3:D4) = D18:C4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.13(C3:D4) | 144,14 |
C6.14(C3:D4) = D4.D9 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | 4- | C6.14(C3:D4) | 144,15 |
C6.15(C3:D4) = D4:D9 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.15(C3:D4) | 144,16 |
C6.16(C3:D4) = C9:Q16 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.16(C3:D4) | 144,17 |
C6.17(C3:D4) = Q8:2D9 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.17(C3:D4) | 144,18 |
C6.18(C3:D4) = C18.D4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.18(C3:D4) | 144,19 |
C6.19(C3:D4) = C2xC9:D4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.19(C3:D4) | 144,46 |
C6.20(C3:D4) = C6.Dic6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.20(C3:D4) | 144,93 |
C6.21(C3:D4) = C6.11D12 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.21(C3:D4) | 144,95 |
C6.22(C3:D4) = C32:7D8 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.22(C3:D4) | 144,96 |
C6.23(C3:D4) = C32:9SD16 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.23(C3:D4) | 144,97 |
C6.24(C3:D4) = C32:11SD16 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.24(C3:D4) | 144,98 |
C6.25(C3:D4) = C32:7Q16 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.25(C3:D4) | 144,99 |
C6.26(C3:D4) = C62:5C4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.26(C3:D4) | 144,100 |
C6.27(C3:D4) = C3xDic3:C4 | central extension (φ=1) | 48 | | C6.27(C3:D4) | 144,77 |
C6.28(C3:D4) = C3xD6:C4 | central extension (φ=1) | 48 | | C6.28(C3:D4) | 144,79 |
C6.29(C3:D4) = C3xD4:S3 | central extension (φ=1) | 24 | 4 | C6.29(C3:D4) | 144,80 |
C6.30(C3:D4) = C3xD4.S3 | central extension (φ=1) | 24 | 4 | C6.30(C3:D4) | 144,81 |
C6.31(C3:D4) = C3xQ8:2S3 | central extension (φ=1) | 48 | 4 | C6.31(C3:D4) | 144,82 |
C6.32(C3:D4) = C3xC3:Q16 | central extension (φ=1) | 48 | 4 | C6.32(C3:D4) | 144,83 |
C6.33(C3:D4) = C3xC6.D4 | central extension (φ=1) | 24 | | C6.33(C3:D4) | 144,84 |