Extensions 1→N→G→Q→1 with N=C6 and Q=C3:D4

Direct product G=NxQ with N=C6 and Q=C3:D4
dρLabelID
C6xC3:D424C6xC3:D4144,167

Semidirect products G=N:Q with N=C6 and Q=C3:D4
extensionφ:Q→Aut NdρLabelID
C6:1(C3:D4) = C2xC3:D12φ: C3:D4/Dic3C2 ⊆ Aut C624C6:1(C3:D4)144,151
C6:2(C3:D4) = C2xD6:S3φ: C3:D4/D6C2 ⊆ Aut C648C6:2(C3:D4)144,150
C6:3(C3:D4) = C2xC32:7D4φ: C3:D4/C2xC6C2 ⊆ Aut C672C6:3(C3:D4)144,177

Non-split extensions G=N.Q with N=C6 and Q=C3:D4
extensionφ:Q→Aut NdρLabelID
C6.1(C3:D4) = C3:D24φ: C3:D4/Dic3C2 ⊆ Aut C6244+C6.1(C3:D4)144,57
C6.2(C3:D4) = D12.S3φ: C3:D4/Dic3C2 ⊆ Aut C6484-C6.2(C3:D4)144,59
C6.3(C3:D4) = C32:5SD16φ: C3:D4/Dic3C2 ⊆ Aut C6244+C6.3(C3:D4)144,60
C6.4(C3:D4) = C32:3Q16φ: C3:D4/Dic3C2 ⊆ Aut C6484-C6.4(C3:D4)144,62
C6.5(C3:D4) = C6.D12φ: C3:D4/Dic3C2 ⊆ Aut C624C6.5(C3:D4)144,65
C6.6(C3:D4) = Dic3:Dic3φ: C3:D4/Dic3C2 ⊆ Aut C648C6.6(C3:D4)144,66
C6.7(C3:D4) = C32:2D8φ: C3:D4/D6C2 ⊆ Aut C6484C6.7(C3:D4)144,56
C6.8(C3:D4) = Dic6:S3φ: C3:D4/D6C2 ⊆ Aut C6484C6.8(C3:D4)144,58
C6.9(C3:D4) = C32:2Q16φ: C3:D4/D6C2 ⊆ Aut C6484C6.9(C3:D4)144,61
C6.10(C3:D4) = D6:Dic3φ: C3:D4/D6C2 ⊆ Aut C648C6.10(C3:D4)144,64
C6.11(C3:D4) = C62.C22φ: C3:D4/D6C2 ⊆ Aut C648C6.11(C3:D4)144,67
C6.12(C3:D4) = Dic9:C4φ: C3:D4/C2xC6C2 ⊆ Aut C6144C6.12(C3:D4)144,12
C6.13(C3:D4) = D18:C4φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.13(C3:D4)144,14
C6.14(C3:D4) = D4.D9φ: C3:D4/C2xC6C2 ⊆ Aut C6724-C6.14(C3:D4)144,15
C6.15(C3:D4) = D4:D9φ: C3:D4/C2xC6C2 ⊆ Aut C6724+C6.15(C3:D4)144,16
C6.16(C3:D4) = C9:Q16φ: C3:D4/C2xC6C2 ⊆ Aut C61444-C6.16(C3:D4)144,17
C6.17(C3:D4) = Q8:2D9φ: C3:D4/C2xC6C2 ⊆ Aut C6724+C6.17(C3:D4)144,18
C6.18(C3:D4) = C18.D4φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.18(C3:D4)144,19
C6.19(C3:D4) = C2xC9:D4φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.19(C3:D4)144,46
C6.20(C3:D4) = C6.Dic6φ: C3:D4/C2xC6C2 ⊆ Aut C6144C6.20(C3:D4)144,93
C6.21(C3:D4) = C6.11D12φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.21(C3:D4)144,95
C6.22(C3:D4) = C32:7D8φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.22(C3:D4)144,96
C6.23(C3:D4) = C32:9SD16φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.23(C3:D4)144,97
C6.24(C3:D4) = C32:11SD16φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.24(C3:D4)144,98
C6.25(C3:D4) = C32:7Q16φ: C3:D4/C2xC6C2 ⊆ Aut C6144C6.25(C3:D4)144,99
C6.26(C3:D4) = C62:5C4φ: C3:D4/C2xC6C2 ⊆ Aut C672C6.26(C3:D4)144,100
C6.27(C3:D4) = C3xDic3:C4central extension (φ=1)48C6.27(C3:D4)144,77
C6.28(C3:D4) = C3xD6:C4central extension (φ=1)48C6.28(C3:D4)144,79
C6.29(C3:D4) = C3xD4:S3central extension (φ=1)244C6.29(C3:D4)144,80
C6.30(C3:D4) = C3xD4.S3central extension (φ=1)244C6.30(C3:D4)144,81
C6.31(C3:D4) = C3xQ8:2S3central extension (φ=1)484C6.31(C3:D4)144,82
C6.32(C3:D4) = C3xC3:Q16central extension (φ=1)484C6.32(C3:D4)144,83
C6.33(C3:D4) = C3xC6.D4central extension (φ=1)24C6.33(C3:D4)144,84

׿
x
:
Z
F
o
wr
Q
<