Copied to
clipboard

G = C3xD4:S3order 144 = 24·32

Direct product of C3 and D4:S3

direct product, metabelian, supersoluble, monomial

Aliases: C3xD4:S3, C32:6D8, D12:2C6, C12.33D6, C3:C8:1C6, D4:(C3xS3), C3:2(C3xD8), (C3xD4):1C6, (C3xD4):4S3, C4.1(S3xC6), C6.7(C3xD4), (C3xD12):3C2, C12.1(C2xC6), (C3xC6).28D4, (D4xC32):1C2, C6.29(C3:D4), (C3xC12).8C22, (C3xC3:C8):4C2, C2.4(C3xC3:D4), SmallGroup(144,80)

Series: Derived Chief Lower central Upper central

C1C12 — C3xD4:S3
C1C3C6C12C3xC12C3xD12 — C3xD4:S3
C3C6C12 — C3xD4:S3
C1C6C12C3xD4

Generators and relations for C3xD4:S3
 G = < a,b,c,d,e | a3=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >

Subgroups: 132 in 52 conjugacy classes, 22 normal (all characteristic)
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2xC6, D8, C3xS3, C3:D4, C3xD4, S3xC6, D4:S3, C3xD8, C3xC3:D4, C3xD4:S3
4C2
12C2
2C3
2C22
6C22
2C6
4C6
4C6
4C6
4C6
4S3
12C6
3D4
3C8
2C2xC6
2C2xC6
2C12
2C2xC6
2C2xC6
2D6
6C2xC6
4C3xC6
4C3xS3
3D8
2C3xD4
3C3xD4
3C24
2C62
2S3xC6
3C3xD8

Permutation representations of C3xD4:S3
On 24 points - transitive group 24T246
Generators in S24
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 10 21)(6 11 22)(7 12 23)(8 9 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(6 8)(9 11)(13 14)(15 16)(17 20)(18 19)(22 24)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 10 21)(6 11 22)(7 12 23)(8 9 24)
(1 22)(2 21)(3 24)(4 23)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)

G:=sub<Sym(24)| (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(6,8)(9,11)(13,14)(15,16)(17,20)(18,19)(22,24), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,22)(2,21)(3,24)(4,23)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)>;

G:=Group( (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(6,8)(9,11)(13,14)(15,16)(17,20)(18,19)(22,24), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,22)(2,21)(3,24)(4,23)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13) );

G=PermutationGroup([[(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,10,21),(6,11,22),(7,12,23),(8,9,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(6,8),(9,11),(13,14),(15,16),(17,20),(18,19),(22,24)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,10,21),(6,11,22),(7,12,23),(8,9,24)], [(1,22),(2,21),(3,24),(4,23),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13)]])

G:=TransitiveGroup(24,246);

C3xD4:S3 is a maximal subgroup of
Dic6:3D6  D12:D6  D12.D6  D12:9D6  D12.22D6  D12.8D6  D12:5D6  C3xS3xD8  He3:6D8  D36:C6  He3:7D8
C3xD4:S3 is a maximal quotient of
He3:6D8  D36:C6

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E 4 6A6B6C6D6E6F···6M6N6O8A8B12A12B12C12D12E24A24B24C24D
order1222333334666666···66688121212121224242424
size11412112222112224···4121266224446666

36 irreducible representations

dim11111111222222222244
type+++++++++
imageC1C2C2C2C3C6C6C6S3D4D6D8C3xS3C3:D4C3xD4S3xC6C3xD8C3xC3:D4D4:S3C3xD4:S3
kernelC3xD4:S3C3xC3:C8C3xD12D4xC32D4:S3C3:C8D12C3xD4C3xD4C3xC6C12C32D4C6C6C4C3C2C3C1
# reps11112222111222224412

Matrix representation of C3xD4:S3 in GL4(F7) generated by

4000
0400
0040
0004
,
3613
5133
3331
2560
,
0110
1010
0060
0001
,
3632
6342
0020
0004
,
2016
2241
2566
5514
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[3,5,3,2,6,1,3,5,1,3,3,6,3,3,1,0],[0,1,0,0,1,0,0,0,1,1,6,0,0,0,0,1],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[2,2,2,5,0,2,5,5,1,4,6,1,6,1,6,4] >;

C3xD4:S3 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes S_3
% in TeX

G:=Group("C3xD4:S3");
// GroupNames label

G:=SmallGroup(144,80);
// by ID

G=gap.SmallGroup(144,80);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-3,169,867,441,69,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C3xD4:S3 in TeX

׿
x
:
Z
F
o
wr
Q
<