Extensions 1→N→G→Q→1 with N=C3xC3:C8 and Q=C2

Direct product G=NxQ with N=C3xC3:C8 and Q=C2
dρLabelID
C6xC3:C848C6xC3:C8144,74

Semidirect products G=N:Q with N=C3xC3:C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC3:C8):1C2 = C3:D24φ: C2/C1C2 ⊆ Out C3xC3:C8244+(C3xC3:C8):1C2144,57
(C3xC3:C8):2C2 = D12.S3φ: C2/C1C2 ⊆ Out C3xC3:C8484-(C3xC3:C8):2C2144,59
(C3xC3:C8):3C2 = C32:5SD16φ: C2/C1C2 ⊆ Out C3xC3:C8244+(C3xC3:C8):3C2144,60
(C3xC3:C8):4C2 = C3xD4:S3φ: C2/C1C2 ⊆ Out C3xC3:C8244(C3xC3:C8):4C2144,80
(C3xC3:C8):5C2 = S3xC3:C8φ: C2/C1C2 ⊆ Out C3xC3:C8484(C3xC3:C8):5C2144,52
(C3xC3:C8):6C2 = C12.29D6φ: C2/C1C2 ⊆ Out C3xC3:C8244(C3xC3:C8):6C2144,53
(C3xC3:C8):7C2 = D6.Dic3φ: C2/C1C2 ⊆ Out C3xC3:C8484(C3xC3:C8):7C2144,54
(C3xC3:C8):8C2 = C12.31D6φ: C2/C1C2 ⊆ Out C3xC3:C8244(C3xC3:C8):8C2144,55
(C3xC3:C8):9C2 = C3xD4.S3φ: C2/C1C2 ⊆ Out C3xC3:C8244(C3xC3:C8):9C2144,81
(C3xC3:C8):10C2 = C3xQ8:2S3φ: C2/C1C2 ⊆ Out C3xC3:C8484(C3xC3:C8):10C2144,82
(C3xC3:C8):11C2 = C3xC8:S3φ: C2/C1C2 ⊆ Out C3xC3:C8482(C3xC3:C8):11C2144,70
(C3xC3:C8):12C2 = C3xC4.Dic3φ: C2/C1C2 ⊆ Out C3xC3:C8242(C3xC3:C8):12C2144,75
(C3xC3:C8):13C2 = S3xC24φ: trivial image482(C3xC3:C8):13C2144,69

Non-split extensions G=N.Q with N=C3xC3:C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC3:C8).1C2 = C32:3Q16φ: C2/C1C2 ⊆ Out C3xC3:C8484-(C3xC3:C8).1C2144,62
(C3xC3:C8).2C2 = C3xC3:Q16φ: C2/C1C2 ⊆ Out C3xC3:C8484(C3xC3:C8).2C2144,83

׿
x
:
Z
F
o
wr
Q
<