extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2xDic3) = S3xC3:C8 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(C2xDic3) | 144,52 |
C6.2(C2xDic3) = D6.Dic3 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(C2xDic3) | 144,54 |
C6.3(C2xDic3) = Dic32 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C6 | 48 | | C6.3(C2xDic3) | 144,63 |
C6.4(C2xDic3) = D6:Dic3 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C6 | 48 | | C6.4(C2xDic3) | 144,64 |
C6.5(C2xDic3) = Dic3:Dic3 | φ: C2xDic3/Dic3 → C2 ⊆ Aut C6 | 48 | | C6.5(C2xDic3) | 144,66 |
C6.6(C2xDic3) = C2xC9:C8 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.6(C2xDic3) | 144,9 |
C6.7(C2xDic3) = C4.Dic9 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 72 | 2 | C6.7(C2xDic3) | 144,10 |
C6.8(C2xDic3) = C4xDic9 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.8(C2xDic3) | 144,11 |
C6.9(C2xDic3) = C4:Dic9 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.9(C2xDic3) | 144,13 |
C6.10(C2xDic3) = C18.D4 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.10(C2xDic3) | 144,19 |
C6.11(C2xDic3) = C22xDic9 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.11(C2xDic3) | 144,45 |
C6.12(C2xDic3) = C2xC32:4C8 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.12(C2xDic3) | 144,90 |
C6.13(C2xDic3) = C12.58D6 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.13(C2xDic3) | 144,91 |
C6.14(C2xDic3) = C4xC3:Dic3 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.14(C2xDic3) | 144,92 |
C6.15(C2xDic3) = C12:Dic3 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 144 | | C6.15(C2xDic3) | 144,94 |
C6.16(C2xDic3) = C62:5C4 | φ: C2xDic3/C2xC6 → C2 ⊆ Aut C6 | 72 | | C6.16(C2xDic3) | 144,100 |
C6.17(C2xDic3) = C6xC3:C8 | central extension (φ=1) | 48 | | C6.17(C2xDic3) | 144,74 |
C6.18(C2xDic3) = C3xC4.Dic3 | central extension (φ=1) | 24 | 2 | C6.18(C2xDic3) | 144,75 |
C6.19(C2xDic3) = Dic3xC12 | central extension (φ=1) | 48 | | C6.19(C2xDic3) | 144,76 |
C6.20(C2xDic3) = C3xC4:Dic3 | central extension (φ=1) | 48 | | C6.20(C2xDic3) | 144,78 |
C6.21(C2xDic3) = C3xC6.D4 | central extension (φ=1) | 24 | | C6.21(C2xDic3) | 144,84 |