Extensions 1→N→G→Q→1 with N=C6 and Q=C2xDic3

Direct product G=NxQ with N=C6 and Q=C2xDic3
dρLabelID
Dic3xC2xC648Dic3xC2xC6144,166

Semidirect products G=N:Q with N=C6 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C6:1(C2xDic3) = C2xS3xDic3φ: C2xDic3/Dic3C2 ⊆ Aut C648C6:1(C2xDic3)144,146
C6:2(C2xDic3) = C22xC3:Dic3φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6:2(C2xDic3)144,176

Non-split extensions G=N.Q with N=C6 and Q=C2xDic3
extensionφ:Q→Aut NdρLabelID
C6.1(C2xDic3) = S3xC3:C8φ: C2xDic3/Dic3C2 ⊆ Aut C6484C6.1(C2xDic3)144,52
C6.2(C2xDic3) = D6.Dic3φ: C2xDic3/Dic3C2 ⊆ Aut C6484C6.2(C2xDic3)144,54
C6.3(C2xDic3) = Dic32φ: C2xDic3/Dic3C2 ⊆ Aut C648C6.3(C2xDic3)144,63
C6.4(C2xDic3) = D6:Dic3φ: C2xDic3/Dic3C2 ⊆ Aut C648C6.4(C2xDic3)144,64
C6.5(C2xDic3) = Dic3:Dic3φ: C2xDic3/Dic3C2 ⊆ Aut C648C6.5(C2xDic3)144,66
C6.6(C2xDic3) = C2xC9:C8φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6.6(C2xDic3)144,9
C6.7(C2xDic3) = C4.Dic9φ: C2xDic3/C2xC6C2 ⊆ Aut C6722C6.7(C2xDic3)144,10
C6.8(C2xDic3) = C4xDic9φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6.8(C2xDic3)144,11
C6.9(C2xDic3) = C4:Dic9φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6.9(C2xDic3)144,13
C6.10(C2xDic3) = C18.D4φ: C2xDic3/C2xC6C2 ⊆ Aut C672C6.10(C2xDic3)144,19
C6.11(C2xDic3) = C22xDic9φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6.11(C2xDic3)144,45
C6.12(C2xDic3) = C2xC32:4C8φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6.12(C2xDic3)144,90
C6.13(C2xDic3) = C12.58D6φ: C2xDic3/C2xC6C2 ⊆ Aut C672C6.13(C2xDic3)144,91
C6.14(C2xDic3) = C4xC3:Dic3φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6.14(C2xDic3)144,92
C6.15(C2xDic3) = C12:Dic3φ: C2xDic3/C2xC6C2 ⊆ Aut C6144C6.15(C2xDic3)144,94
C6.16(C2xDic3) = C62:5C4φ: C2xDic3/C2xC6C2 ⊆ Aut C672C6.16(C2xDic3)144,100
C6.17(C2xDic3) = C6xC3:C8central extension (φ=1)48C6.17(C2xDic3)144,74
C6.18(C2xDic3) = C3xC4.Dic3central extension (φ=1)242C6.18(C2xDic3)144,75
C6.19(C2xDic3) = Dic3xC12central extension (φ=1)48C6.19(C2xDic3)144,76
C6.20(C2xDic3) = C3xC4:Dic3central extension (φ=1)48C6.20(C2xDic3)144,78
C6.21(C2xDic3) = C3xC6.D4central extension (φ=1)24C6.21(C2xDic3)144,84

׿
x
:
Z
F
o
wr
Q
<