Copied to
clipboard

G = C4xDic9order 144 = 24·32

Direct product of C4 and Dic9

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4xDic9, C9:C42, C36:2C4, C12.6Dic3, C22.3D18, C6.7(C4xS3), (C2xC4).6D9, C2.2(C4xD9), C3.(C4xDic3), (C2xC36).6C2, C18.3(C2xC4), (C2xC6).19D6, (C2xC12).14S3, C2.2(C2xDic9), C6.8(C2xDic3), (C2xC18).3C22, (C2xDic9).4C2, SmallGroup(144,11)

Series: Derived Chief Lower central Upper central

C1C9 — C4xDic9
C1C3C9C18C2xC18C2xDic9 — C4xDic9
C9 — C4xDic9
C1C2xC4

Generators and relations for C4xDic9
 G = < a,b,c | a4=b18=1, c2=b9, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 115 in 45 conjugacy classes, 31 normal (13 characteristic)
Quotients: C1, C2, C4, C22, S3, C2xC4, Dic3, D6, C42, D9, C4xS3, C2xDic3, Dic9, D18, C4xDic3, C4xD9, C2xDic9, C4xDic9
9C4
9C4
9C4
9C4
9C2xC4
9C2xC4
3Dic3
3Dic3
3Dic3
3Dic3
9C42
3C2xDic3
3C2xDic3
3C4xDic3

Smallest permutation representation of C4xDic9
Regular action on 144 points
Generators in S144
(1 92 59 79)(2 93 60 80)(3 94 61 81)(4 95 62 82)(5 96 63 83)(6 97 64 84)(7 98 65 85)(8 99 66 86)(9 100 67 87)(10 101 68 88)(11 102 69 89)(12 103 70 90)(13 104 71 73)(14 105 72 74)(15 106 55 75)(16 107 56 76)(17 108 57 77)(18 91 58 78)(19 49 115 130)(20 50 116 131)(21 51 117 132)(22 52 118 133)(23 53 119 134)(24 54 120 135)(25 37 121 136)(26 38 122 137)(27 39 123 138)(28 40 124 139)(29 41 125 140)(30 42 126 141)(31 43 109 142)(32 44 110 143)(33 45 111 144)(34 46 112 127)(35 47 113 128)(36 48 114 129)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 40 10 49)(2 39 11 48)(3 38 12 47)(4 37 13 46)(5 54 14 45)(6 53 15 44)(7 52 16 43)(8 51 17 42)(9 50 18 41)(19 79 28 88)(20 78 29 87)(21 77 30 86)(22 76 31 85)(23 75 32 84)(24 74 33 83)(25 73 34 82)(26 90 35 81)(27 89 36 80)(55 143 64 134)(56 142 65 133)(57 141 66 132)(58 140 67 131)(59 139 68 130)(60 138 69 129)(61 137 70 128)(62 136 71 127)(63 135 72 144)(91 125 100 116)(92 124 101 115)(93 123 102 114)(94 122 103 113)(95 121 104 112)(96 120 105 111)(97 119 106 110)(98 118 107 109)(99 117 108 126)

G:=sub<Sym(144)| (1,92,59,79)(2,93,60,80)(3,94,61,81)(4,95,62,82)(5,96,63,83)(6,97,64,84)(7,98,65,85)(8,99,66,86)(9,100,67,87)(10,101,68,88)(11,102,69,89)(12,103,70,90)(13,104,71,73)(14,105,72,74)(15,106,55,75)(16,107,56,76)(17,108,57,77)(18,91,58,78)(19,49,115,130)(20,50,116,131)(21,51,117,132)(22,52,118,133)(23,53,119,134)(24,54,120,135)(25,37,121,136)(26,38,122,137)(27,39,123,138)(28,40,124,139)(29,41,125,140)(30,42,126,141)(31,43,109,142)(32,44,110,143)(33,45,111,144)(34,46,112,127)(35,47,113,128)(36,48,114,129), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,40,10,49)(2,39,11,48)(3,38,12,47)(4,37,13,46)(5,54,14,45)(6,53,15,44)(7,52,16,43)(8,51,17,42)(9,50,18,41)(19,79,28,88)(20,78,29,87)(21,77,30,86)(22,76,31,85)(23,75,32,84)(24,74,33,83)(25,73,34,82)(26,90,35,81)(27,89,36,80)(55,143,64,134)(56,142,65,133)(57,141,66,132)(58,140,67,131)(59,139,68,130)(60,138,69,129)(61,137,70,128)(62,136,71,127)(63,135,72,144)(91,125,100,116)(92,124,101,115)(93,123,102,114)(94,122,103,113)(95,121,104,112)(96,120,105,111)(97,119,106,110)(98,118,107,109)(99,117,108,126)>;

G:=Group( (1,92,59,79)(2,93,60,80)(3,94,61,81)(4,95,62,82)(5,96,63,83)(6,97,64,84)(7,98,65,85)(8,99,66,86)(9,100,67,87)(10,101,68,88)(11,102,69,89)(12,103,70,90)(13,104,71,73)(14,105,72,74)(15,106,55,75)(16,107,56,76)(17,108,57,77)(18,91,58,78)(19,49,115,130)(20,50,116,131)(21,51,117,132)(22,52,118,133)(23,53,119,134)(24,54,120,135)(25,37,121,136)(26,38,122,137)(27,39,123,138)(28,40,124,139)(29,41,125,140)(30,42,126,141)(31,43,109,142)(32,44,110,143)(33,45,111,144)(34,46,112,127)(35,47,113,128)(36,48,114,129), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,40,10,49)(2,39,11,48)(3,38,12,47)(4,37,13,46)(5,54,14,45)(6,53,15,44)(7,52,16,43)(8,51,17,42)(9,50,18,41)(19,79,28,88)(20,78,29,87)(21,77,30,86)(22,76,31,85)(23,75,32,84)(24,74,33,83)(25,73,34,82)(26,90,35,81)(27,89,36,80)(55,143,64,134)(56,142,65,133)(57,141,66,132)(58,140,67,131)(59,139,68,130)(60,138,69,129)(61,137,70,128)(62,136,71,127)(63,135,72,144)(91,125,100,116)(92,124,101,115)(93,123,102,114)(94,122,103,113)(95,121,104,112)(96,120,105,111)(97,119,106,110)(98,118,107,109)(99,117,108,126) );

G=PermutationGroup([[(1,92,59,79),(2,93,60,80),(3,94,61,81),(4,95,62,82),(5,96,63,83),(6,97,64,84),(7,98,65,85),(8,99,66,86),(9,100,67,87),(10,101,68,88),(11,102,69,89),(12,103,70,90),(13,104,71,73),(14,105,72,74),(15,106,55,75),(16,107,56,76),(17,108,57,77),(18,91,58,78),(19,49,115,130),(20,50,116,131),(21,51,117,132),(22,52,118,133),(23,53,119,134),(24,54,120,135),(25,37,121,136),(26,38,122,137),(27,39,123,138),(28,40,124,139),(29,41,125,140),(30,42,126,141),(31,43,109,142),(32,44,110,143),(33,45,111,144),(34,46,112,127),(35,47,113,128),(36,48,114,129)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,40,10,49),(2,39,11,48),(3,38,12,47),(4,37,13,46),(5,54,14,45),(6,53,15,44),(7,52,16,43),(8,51,17,42),(9,50,18,41),(19,79,28,88),(20,78,29,87),(21,77,30,86),(22,76,31,85),(23,75,32,84),(24,74,33,83),(25,73,34,82),(26,90,35,81),(27,89,36,80),(55,143,64,134),(56,142,65,133),(57,141,66,132),(58,140,67,131),(59,139,68,130),(60,138,69,129),(61,137,70,128),(62,136,71,127),(63,135,72,144),(91,125,100,116),(92,124,101,115),(93,123,102,114),(94,122,103,113),(95,121,104,112),(96,120,105,111),(97,119,106,110),(98,118,107,109),(99,117,108,126)]])

C4xDic9 is a maximal subgroup of
Dic9:C8  C72:C4  Dic18:C4  Q8:3Dic9  C42xD9  C42:2D9  C23.16D18  C23.8D18  Dic9:4D4  Dic9.D4  Dic9:3Q8  C36:Q8  Dic9.Q8  C36.3Q8  C4:C4:7D9  D36:C4  C4:C4:D9  C23.26D18  C36.17D4  C36:D4  Dic9:Q8  C36.23D4
C4xDic9 is a maximal quotient of
C42.D9  C72:C4  C18.C42

48 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E···4L6A6B6C9A9B9C12A12B12C12D18A···18I36A···36L
order1222344444···46669991212121218···1836···36
size1111211119···922222222222···22···2

48 irreducible representations

dim1111122222222
type++++-++-+
imageC1C2C2C4C4S3Dic3D6D9C4xS3Dic9D18C4xD9
kernelC4xDic9C2xDic9C2xC36Dic9C36C2xC12C12C2xC6C2xC4C6C4C22C2
# reps12184121346312

Matrix representation of C4xDic9 in GL4(F37) generated by

1000
0600
0010
0001
,
36000
0100
003120
001711
,
6000
0100
00532
002732
G:=sub<GL(4,GF(37))| [1,0,0,0,0,6,0,0,0,0,1,0,0,0,0,1],[36,0,0,0,0,1,0,0,0,0,31,17,0,0,20,11],[6,0,0,0,0,1,0,0,0,0,5,27,0,0,32,32] >;

C4xDic9 in GAP, Magma, Sage, TeX

C_4\times {\rm Dic}_9
% in TeX

G:=Group("C4xDic9");
// GroupNames label

G:=SmallGroup(144,11);
// by ID

G=gap.SmallGroup(144,11);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,24,55,2404,208,3461]);
// Polycyclic

G:=Group<a,b,c|a^4=b^18=1,c^2=b^9,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C4xDic9 in TeX

׿
x
:
Z
F
o
wr
Q
<