Copied to
clipboard

G = C10xC4oD4order 160 = 25·5

Direct product of C10 and C4oD4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10xC4oD4, C20.55C23, C10.18C24, D4:3(C2xC10), (C2xD4):7C10, (C2xQ8):6C10, Q8:3(C2xC10), (D4xC10):16C2, (C22xC4):6C10, (Q8xC10):13C2, (C22xC20):13C2, (C2xC20):16C22, (C5xD4):12C22, (C2xC10).6C23, C2.3(C23xC10), C4.8(C22xC10), (C5xQ8):11C22, C23.11(C2xC10), C22.1(C22xC10), (C22xC10).30C22, (C2xC20)o(C5xD4), (C2xC20)o(C5xQ8), (C2xC4):5(C2xC10), (C2xC20)o(Q8xC10), SmallGroup(160,231)

Series: Derived Chief Lower central Upper central

C1C2 — C10xC4oD4
C1C2C10C2xC10C5xD4C5xC4oD4 — C10xC4oD4
C1C2 — C10xC4oD4
C1C2xC20 — C10xC4oD4

Generators and relations for C10xC4oD4
 G = < a,b,c,d | a10=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >

Subgroups: 188 in 164 conjugacy classes, 140 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, Q8, C23, C10, C10, C10, C22xC4, C2xD4, C2xQ8, C4oD4, C20, C2xC10, C2xC10, C2xC10, C2xC4oD4, C2xC20, C2xC20, C5xD4, C5xQ8, C22xC10, C22xC20, D4xC10, Q8xC10, C5xC4oD4, C10xC4oD4
Quotients: C1, C2, C22, C5, C23, C10, C4oD4, C24, C2xC10, C2xC4oD4, C22xC10, C5xC4oD4, C23xC10, C10xC4oD4

Smallest permutation representation of C10xC4oD4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 41 28 33)(2 42 29 34)(3 43 30 35)(4 44 21 36)(5 45 22 37)(6 46 23 38)(7 47 24 39)(8 48 25 40)(9 49 26 31)(10 50 27 32)(11 55 80 63)(12 56 71 64)(13 57 72 65)(14 58 73 66)(15 59 74 67)(16 60 75 68)(17 51 76 69)(18 52 77 70)(19 53 78 61)(20 54 79 62)
(1 58 28 66)(2 59 29 67)(3 60 30 68)(4 51 21 69)(5 52 22 70)(6 53 23 61)(7 54 24 62)(8 55 25 63)(9 56 26 64)(10 57 27 65)(11 48 80 40)(12 49 71 31)(13 50 72 32)(14 41 73 33)(15 42 74 34)(16 43 75 35)(17 44 76 36)(18 45 77 37)(19 46 78 38)(20 47 79 39)
(1 53)(2 54)(3 55)(4 56)(5 57)(6 58)(7 59)(8 60)(9 51)(10 52)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 31)(18 32)(19 33)(20 34)(21 64)(22 65)(23 66)(24 67)(25 68)(26 69)(27 70)(28 61)(29 62)(30 63)(41 78)(42 79)(43 80)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,41,28,33)(2,42,29,34)(3,43,30,35)(4,44,21,36)(5,45,22,37)(6,46,23,38)(7,47,24,39)(8,48,25,40)(9,49,26,31)(10,50,27,32)(11,55,80,63)(12,56,71,64)(13,57,72,65)(14,58,73,66)(15,59,74,67)(16,60,75,68)(17,51,76,69)(18,52,77,70)(19,53,78,61)(20,54,79,62), (1,58,28,66)(2,59,29,67)(3,60,30,68)(4,51,21,69)(5,52,22,70)(6,53,23,61)(7,54,24,62)(8,55,25,63)(9,56,26,64)(10,57,27,65)(11,48,80,40)(12,49,71,31)(13,50,72,32)(14,41,73,33)(15,42,74,34)(16,43,75,35)(17,44,76,36)(18,45,77,37)(19,46,78,38)(20,47,79,39), (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,51)(10,52)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,31)(18,32)(19,33)(20,34)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,61)(29,62)(30,63)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,41,28,33)(2,42,29,34)(3,43,30,35)(4,44,21,36)(5,45,22,37)(6,46,23,38)(7,47,24,39)(8,48,25,40)(9,49,26,31)(10,50,27,32)(11,55,80,63)(12,56,71,64)(13,57,72,65)(14,58,73,66)(15,59,74,67)(16,60,75,68)(17,51,76,69)(18,52,77,70)(19,53,78,61)(20,54,79,62), (1,58,28,66)(2,59,29,67)(3,60,30,68)(4,51,21,69)(5,52,22,70)(6,53,23,61)(7,54,24,62)(8,55,25,63)(9,56,26,64)(10,57,27,65)(11,48,80,40)(12,49,71,31)(13,50,72,32)(14,41,73,33)(15,42,74,34)(16,43,75,35)(17,44,76,36)(18,45,77,37)(19,46,78,38)(20,47,79,39), (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,51)(10,52)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,31)(18,32)(19,33)(20,34)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,61)(29,62)(30,63)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,41,28,33),(2,42,29,34),(3,43,30,35),(4,44,21,36),(5,45,22,37),(6,46,23,38),(7,47,24,39),(8,48,25,40),(9,49,26,31),(10,50,27,32),(11,55,80,63),(12,56,71,64),(13,57,72,65),(14,58,73,66),(15,59,74,67),(16,60,75,68),(17,51,76,69),(18,52,77,70),(19,53,78,61),(20,54,79,62)], [(1,58,28,66),(2,59,29,67),(3,60,30,68),(4,51,21,69),(5,52,22,70),(6,53,23,61),(7,54,24,62),(8,55,25,63),(9,56,26,64),(10,57,27,65),(11,48,80,40),(12,49,71,31),(13,50,72,32),(14,41,73,33),(15,42,74,34),(16,43,75,35),(17,44,76,36),(18,45,77,37),(19,46,78,38),(20,47,79,39)], [(1,53),(2,54),(3,55),(4,56),(5,57),(6,58),(7,59),(8,60),(9,51),(10,52),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,31),(18,32),(19,33),(20,34),(21,64),(22,65),(23,66),(24,67),(25,68),(26,69),(27,70),(28,61),(29,62),(30,63),(41,78),(42,79),(43,80),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77)]])

C10xC4oD4 is a maximal subgroup of
C4oD4:Dic5  C20.(C2xD4)  (D4xC10).24C4  (D4xC10):21C4  (D4xC10).29C4  (C5xD4):14D4  (C5xD4).32D4  (D4xC10):22C4  C20.76C24  C20.C24  C10.1042- 1+4  C10.1052- 1+4  C10.1062- 1+4  (C2xC20):15D4  C10.1452+ 1+4  C10.1462+ 1+4  C10.1072- 1+4  (C2xC20):17D4  C10.1472+ 1+4  C10.1482+ 1+4  C10.C25
C10xC4oD4 is a maximal quotient of
D4xC2xC20  Q8xC2xC20

100 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4J5A5B5C5D10A···10L10M···10AJ20A···20P20Q···20AN
order12222···244444···4555510···1010···1020···2020···20
size11112···211112···211111···12···21···12···2

100 irreducible representations

dim111111111122
type+++++
imageC1C2C2C2C2C5C10C10C10C10C4oD4C5xC4oD4
kernelC10xC4oD4C22xC20D4xC10Q8xC10C5xC4oD4C2xC4oD4C22xC4C2xD4C2xQ8C4oD4C10C2
# reps1331841212432416

Matrix representation of C10xC4oD4 in GL3(F41) generated by

4000
0100
0010
,
4000
090
009
,
100
001
0400
,
100
0040
0400
G:=sub<GL(3,GF(41))| [40,0,0,0,10,0,0,0,10],[40,0,0,0,9,0,0,0,9],[1,0,0,0,0,40,0,1,0],[1,0,0,0,0,40,0,40,0] >;

C10xC4oD4 in GAP, Magma, Sage, TeX

C_{10}\times C_4\circ D_4
% in TeX

G:=Group("C10xC4oD4");
// GroupNames label

G:=SmallGroup(160,231);
// by ID

G=gap.SmallGroup(160,231);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-2,985,374]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<