Copied to
clipboard

G = C5xSD32order 160 = 25·5

Direct product of C5 and SD32

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C5xSD32, C80:6C2, D8.C10, C16:2C10, Q16:1C10, C10.16D8, C20.37D4, C40.25C22, C2.4(C5xD8), C4.2(C5xD4), C8.3(C2xC10), (C5xQ16):5C2, (C5xD8).2C2, SmallGroup(160,62)

Series: Derived Chief Lower central Upper central

C1C8 — C5xSD32
C1C2C4C8C40C5xQ16 — C5xSD32
C1C2C4C8 — C5xSD32
C1C10C20C40 — C5xSD32

Generators and relations for C5xSD32
 G = < a,b,c | a5=b16=c2=1, ab=ba, ac=ca, cbc=b7 >

Subgroups: 56 in 26 conjugacy classes, 16 normal (all characteristic)
Quotients: C1, C2, C22, C5, D4, C10, D8, C2xC10, SD32, C5xD4, C5xD8, C5xSD32
8C2
4C22
4C4
8C10
2D4
2Q8
4C20
4C2xC10
2C5xQ8
2C5xD4

Smallest permutation representation of C5xSD32
On 80 points
Generators in S80
(1 42 74 21 55)(2 43 75 22 56)(3 44 76 23 57)(4 45 77 24 58)(5 46 78 25 59)(6 47 79 26 60)(7 48 80 27 61)(8 33 65 28 62)(9 34 66 29 63)(10 35 67 30 64)(11 36 68 31 49)(12 37 69 32 50)(13 38 70 17 51)(14 39 71 18 52)(15 40 72 19 53)(16 41 73 20 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 25)(18 32)(19 23)(20 30)(22 28)(24 26)(27 31)(33 43)(35 41)(36 48)(37 39)(38 46)(40 44)(45 47)(49 61)(50 52)(51 59)(53 57)(54 64)(56 62)(58 60)(65 75)(67 73)(68 80)(69 71)(70 78)(72 76)(77 79)

G:=sub<Sym(80)| (1,42,74,21,55)(2,43,75,22,56)(3,44,76,23,57)(4,45,77,24,58)(5,46,78,25,59)(6,47,79,26,60)(7,48,80,27,61)(8,33,65,28,62)(9,34,66,29,63)(10,35,67,30,64)(11,36,68,31,49)(12,37,69,32,50)(13,38,70,17,51)(14,39,71,18,52)(15,40,72,19,53)(16,41,73,20,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,43)(35,41)(36,48)(37,39)(38,46)(40,44)(45,47)(49,61)(50,52)(51,59)(53,57)(54,64)(56,62)(58,60)(65,75)(67,73)(68,80)(69,71)(70,78)(72,76)(77,79)>;

G:=Group( (1,42,74,21,55)(2,43,75,22,56)(3,44,76,23,57)(4,45,77,24,58)(5,46,78,25,59)(6,47,79,26,60)(7,48,80,27,61)(8,33,65,28,62)(9,34,66,29,63)(10,35,67,30,64)(11,36,68,31,49)(12,37,69,32,50)(13,38,70,17,51)(14,39,71,18,52)(15,40,72,19,53)(16,41,73,20,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,43)(35,41)(36,48)(37,39)(38,46)(40,44)(45,47)(49,61)(50,52)(51,59)(53,57)(54,64)(56,62)(58,60)(65,75)(67,73)(68,80)(69,71)(70,78)(72,76)(77,79) );

G=PermutationGroup([[(1,42,74,21,55),(2,43,75,22,56),(3,44,76,23,57),(4,45,77,24,58),(5,46,78,25,59),(6,47,79,26,60),(7,48,80,27,61),(8,33,65,28,62),(9,34,66,29,63),(10,35,67,30,64),(11,36,68,31,49),(12,37,69,32,50),(13,38,70,17,51),(14,39,71,18,52),(15,40,72,19,53),(16,41,73,20,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,25),(18,32),(19,23),(20,30),(22,28),(24,26),(27,31),(33,43),(35,41),(36,48),(37,39),(38,46),(40,44),(45,47),(49,61),(50,52),(51,59),(53,57),(54,64),(56,62),(58,60),(65,75),(67,73),(68,80),(69,71),(70,78),(72,76),(77,79)]])

C5xSD32 is a maximal subgroup of   C16:D10  SD32:D5  SD32:3D5

55 conjugacy classes

class 1 2A2B4A4B5A5B5C5D8A8B10A10B10C10D10E10F10G10H16A16B16C16D20A20B20C20D20E20F20G20H40A···40H80A···80P
order12244555588101010101010101016161616202020202020202040···4080···80
size11828111122111188882222222288882···22···2

55 irreducible representations

dim11111111222222
type++++++
imageC1C2C2C2C5C10C10C10D4D8SD32C5xD4C5xD8C5xSD32
kernelC5xSD32C80C5xD8C5xQ16SD32C16D8Q16C20C10C5C4C2C1
# reps111144441244816

Matrix representation of C5xSD32 in GL2(F241) generated by

980
098
,
10341
200103
,
01
10
G:=sub<GL(2,GF(241))| [98,0,0,98],[103,200,41,103],[0,1,1,0] >;

C5xSD32 in GAP, Magma, Sage, TeX

C_5\times {\rm SD}_{32}
% in TeX

G:=Group("C5xSD32");
// GroupNames label

G:=SmallGroup(160,62);
// by ID

G=gap.SmallGroup(160,62);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-2,480,265,1443,729,165,3604,1810,88]);
// Polycyclic

G:=Group<a,b,c|a^5=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^7>;
// generators/relations

Export

Subgroup lattice of C5xSD32 in TeX

׿
x
:
Z
F
o
wr
Q
<