Direct product G=NxQ with N=C8 and Q=D10
Semidirect products G=N:Q with N=C8 and Q=D10
Non-split extensions G=N.Q with N=C8 and Q=D10
extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1D10 = C8.D10 | φ: D10/C5 → C22 ⊆ Aut C8 | 80 | 4- | C8.1D10 | 160,130 |
C8.2D10 = SD16:D5 | φ: D10/C5 → C22 ⊆ Aut C8 | 80 | 4- | C8.2D10 | 160,136 |
C8.3D10 = Q16:D5 | φ: D10/C5 → C22 ⊆ Aut C8 | 80 | 4 | C8.3D10 | 160,139 |
C8.4D10 = C5:D16 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4+ | C8.4D10 | 160,33 |
C8.5D10 = D8.D5 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4- | C8.5D10 | 160,34 |
C8.6D10 = C5:SD32 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4+ | C8.6D10 | 160,35 |
C8.7D10 = C5:Q32 | φ: D10/D5 → C2 ⊆ Aut C8 | 160 | 4- | C8.7D10 | 160,36 |
C8.8D10 = D8:3D5 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4- | C8.8D10 | 160,133 |
C8.9D10 = D5xQ16 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4- | C8.9D10 | 160,138 |
C8.10D10 = Q8.D10 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4+ | C8.10D10 | 160,140 |
C8.11D10 = SD16:3D5 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4 | C8.11D10 | 160,137 |
C8.12D10 = D20.2C4 | φ: D10/D5 → C2 ⊆ Aut C8 | 80 | 4 | C8.12D10 | 160,128 |
C8.13D10 = D80 | φ: D10/C10 → C2 ⊆ Aut C8 | 80 | 2+ | C8.13D10 | 160,6 |
C8.14D10 = C16:D5 | φ: D10/C10 → C2 ⊆ Aut C8 | 80 | 2 | C8.14D10 | 160,7 |
C8.15D10 = Dic40 | φ: D10/C10 → C2 ⊆ Aut C8 | 160 | 2- | C8.15D10 | 160,8 |
C8.16D10 = C2xDic20 | φ: D10/C10 → C2 ⊆ Aut C8 | 160 | | C8.16D10 | 160,126 |
C8.17D10 = D40:7C2 | φ: D10/C10 → C2 ⊆ Aut C8 | 80 | 2 | C8.17D10 | 160,125 |
C8.18D10 = D20.3C4 | φ: D10/C10 → C2 ⊆ Aut C8 | 80 | 2 | C8.18D10 | 160,122 |
C8.19D10 = D5xC16 | central extension (φ=1) | 80 | 2 | C8.19D10 | 160,4 |
C8.20D10 = C80:C2 | central extension (φ=1) | 80 | 2 | C8.20D10 | 160,5 |
C8.21D10 = C2xC5:2C16 | central extension (φ=1) | 160 | | C8.21D10 | 160,18 |
C8.22D10 = C20.4C8 | central extension (φ=1) | 80 | 2 | C8.22D10 | 160,19 |
x
:
Z
F
o
wr
Q
<