metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D40:7C2, C4.20D20, C20.35D4, C8.17D10, Dic20:7C2, C22.1D20, C40.17C22, C20.30C23, D20.7C22, Dic10.6C22, (C2xC8):4D5, (C2xC40):6C2, C5:1(C4oD8), C4oD20:1C2, C40:C2:7C2, C2.13(C2xD20), C10.11(C2xD4), (C2xC10).18D4, (C2xC4).81D10, C4.28(C22xD5), (C2xC20).99C22, SmallGroup(160,125)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D40:7C2
G = < a,b,c | a40=b2=c2=1, bab=a-1, ac=ca, cbc=a20b >
Subgroups: 232 in 62 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, Q8, D5, C10, C10, C2xC8, D8, SD16, Q16, C4oD4, Dic5, C20, D10, C2xC10, C4oD8, C40, Dic10, C4xD5, D20, C5:D4, C2xC20, C40:C2, D40, Dic20, C2xC40, C4oD20, D40:7C2
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, C4oD8, D20, C22xD5, C2xD20, D40:7C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(41 51)(42 50)(43 49)(44 48)(45 47)(52 80)(53 79)(54 78)(55 77)(56 76)(57 75)(58 74)(59 73)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,51)(42,50)(43,49)(44,48)(45,47)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,51)(42,50)(43,49)(44,48)(45,47)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(41,51),(42,50),(43,49),(44,48),(45,47),(52,80),(53,79),(54,78),(55,77),(56,76),(57,75),(58,74),(59,73),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)]])
D40:7C2 is a maximal subgroup of
D40:14C4 D40.5C4 D40.3C4 D40:8C4 D40:17C4 D40:10C4 D40:16C4 D40:13C4 D80:7C2 D80:C2 C16.D10 D8.D10 Q16.D10 C40.30C23 C40.9C23 D4.11D20 D4.12D20 D4.13D20 D8:13D10 D20.29D4 D20.30D4 D5xC4oD8 Q16:D10 D6.1D20 D40:7S3 D120:5C2 D20.31D6 C40.69D6
D40:7C2 is a maximal quotient of
C40.13Q8 C4xC40:C2 C4xD40 C8.8D20 C42.264D10 C4xDic20 C23.10D20 D20.32D4 D20:14D4 C23.13D20 Dic10.3Q8 D20.19D4 C42.36D10 D20.3Q8 C23.22D20 C23.23D20 C40:30D4 C40:29D4 C40.82D4 D6.1D20 D40:7S3 D120:5C2 D20.31D6 C40.69D6
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | ··· | 20H | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 20 | 20 | 1 | 1 | 2 | 20 | 20 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | C4oD8 | D20 | D20 | D40:7C2 |
kernel | D40:7C2 | C40:C2 | D40 | Dic20 | C2xC40 | C4oD20 | C20 | C2xC10 | C2xC8 | C8 | C2xC4 | C5 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 4 | 4 | 4 | 16 |
Matrix representation of D40:7C2 ►in GL2(F41) generated by
26 | 21 |
23 | 6 |
27 | 5 |
2 | 14 |
24 | 34 |
6 | 17 |
G:=sub<GL(2,GF(41))| [26,23,21,6],[27,2,5,14],[24,6,34,17] >;
D40:7C2 in GAP, Magma, Sage, TeX
D_{40}\rtimes_7C_2
% in TeX
G:=Group("D40:7C2");
// GroupNames label
G:=SmallGroup(160,125);
// by ID
G=gap.SmallGroup(160,125);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,50,579,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^40=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^20*b>;
// generators/relations