Copied to
clipboard

G = D4:2D11order 176 = 24·11

The semidirect product of D4 and D11 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4:2D11, C4.5D22, Dic22:3C2, C22.6C23, C44.5C22, C22.1D22, D22.2C22, Dic11.4C22, (D4xC11):3C2, (C4xD11):2C2, C11:2(C4oD4), C11:D4:2C2, (C2xC22).C22, (C2xDic11):3C2, C2.7(C22xD11), SmallGroup(176,32)

Series: Derived Chief Lower central Upper central

C1C22 — D4:2D11
C1C11C22D22C4xD11 — D4:2D11
C11C22 — D4:2D11
C1C2D4

Generators and relations for D4:2D11
 G = < a,b,c,d | a4=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 176 in 40 conjugacy classes, 23 normal (13 characteristic)
Quotients: C1, C2, C22, C23, C4oD4, D11, D22, C22xD11, D4:2D11
2C2
2C2
22C2
11C4
11C22
11C4
11C4
2C22
2C22
2D11
11C2xC4
11D4
11D4
11C2xC4
11Q8
11C2xC4
11C4oD4

Smallest permutation representation of D4:2D11
On 88 points
Generators in S88
(1 65 21 54)(2 66 22 55)(3 56 12 45)(4 57 13 46)(5 58 14 47)(6 59 15 48)(7 60 16 49)(8 61 17 50)(9 62 18 51)(10 63 19 52)(11 64 20 53)(23 78 34 67)(24 79 35 68)(25 80 36 69)(26 81 37 70)(27 82 38 71)(28 83 39 72)(29 84 40 73)(30 85 41 74)(31 86 42 75)(32 87 43 76)(33 88 44 77)
(1 76)(2 77)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 73)(10 74)(11 75)(12 78)(13 79)(14 80)(15 81)(16 82)(17 83)(18 84)(19 85)(20 86)(21 87)(22 88)(23 45)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)(41 63)(42 64)(43 65)(44 66)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 44)(31 43)(32 42)(33 41)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 88)(75 87)(76 86)(77 85)

G:=sub<Sym(88)| (1,65,21,54)(2,66,22,55)(3,56,12,45)(4,57,13,46)(5,58,14,47)(6,59,15,48)(7,60,16,49)(8,61,17,50)(9,62,18,51)(10,63,19,52)(11,64,20,53)(23,78,34,67)(24,79,35,68)(25,80,36,69)(26,81,37,70)(27,82,38,71)(28,83,39,72)(29,84,40,73)(30,85,41,74)(31,86,42,75)(32,87,43,76)(33,88,44,77), (1,76)(2,77)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,78)(13,79)(14,80)(15,81)(16,82)(17,83)(18,84)(19,85)(20,86)(21,87)(22,88)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,65)(44,66), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85)>;

G:=Group( (1,65,21,54)(2,66,22,55)(3,56,12,45)(4,57,13,46)(5,58,14,47)(6,59,15,48)(7,60,16,49)(8,61,17,50)(9,62,18,51)(10,63,19,52)(11,64,20,53)(23,78,34,67)(24,79,35,68)(25,80,36,69)(26,81,37,70)(27,82,38,71)(28,83,39,72)(29,84,40,73)(30,85,41,74)(31,86,42,75)(32,87,43,76)(33,88,44,77), (1,76)(2,77)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,78)(13,79)(14,80)(15,81)(16,82)(17,83)(18,84)(19,85)(20,86)(21,87)(22,88)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,65)(44,66), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,44)(31,43)(32,42)(33,41)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,88)(75,87)(76,86)(77,85) );

G=PermutationGroup([[(1,65,21,54),(2,66,22,55),(3,56,12,45),(4,57,13,46),(5,58,14,47),(6,59,15,48),(7,60,16,49),(8,61,17,50),(9,62,18,51),(10,63,19,52),(11,64,20,53),(23,78,34,67),(24,79,35,68),(25,80,36,69),(26,81,37,70),(27,82,38,71),(28,83,39,72),(29,84,40,73),(30,85,41,74),(31,86,42,75),(32,87,43,76),(33,88,44,77)], [(1,76),(2,77),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,73),(10,74),(11,75),(12,78),(13,79),(14,80),(15,81),(16,82),(17,83),(18,84),(19,85),(20,86),(21,87),(22,88),(23,45),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62),(41,63),(42,64),(43,65),(44,66)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,44),(31,43),(32,42),(33,41),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,88),(75,87),(76,86),(77,85)]])

D4:2D11 is a maximal subgroup of
D4:D22  D8:3D11  D4.D22  Q8.D22  D4:6D22  C4oD4xD11  D4.10D22
D4:2D11 is a maximal quotient of
C23.11D22  C22:Dic22  C23.D22  Dic11:4D4  D22.D4  Dic11.D4  C22.D44  Dic22:C4  Dic11.Q8  C44.3Q8  C4:C4:7D11  D22:2Q8  C4:C4:D11  D4xDic11  C23.18D22  C44.17D4  C44:2D4  Dic11:D4

35 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E11A···11E22A···22E22F···22O44A···44E
order122224444411···1122···2222···2244···44
size1122222111122222···22···24···44···4

35 irreducible representations

dim11111122224
type+++++++++-
imageC1C2C2C2C2C2C4oD4D11D22D22D4:2D11
kernelD4:2D11Dic22C4xD11C2xDic11C11:D4D4xC11C11D4C4C22C1
# reps111221255105

Matrix representation of D4:2D11 in GL4(F89) generated by

1000
0100
00340
002255
,
88000
08800
003481
002255
,
84100
647600
0010
0001
,
27800
658700
0010
005388
G:=sub<GL(4,GF(89))| [1,0,0,0,0,1,0,0,0,0,34,22,0,0,0,55],[88,0,0,0,0,88,0,0,0,0,34,22,0,0,81,55],[84,64,0,0,1,76,0,0,0,0,1,0,0,0,0,1],[2,65,0,0,78,87,0,0,0,0,1,53,0,0,0,88] >;

D4:2D11 in GAP, Magma, Sage, TeX

D_4\rtimes_2D_{11}
% in TeX

G:=Group("D4:2D11");
// GroupNames label

G:=SmallGroup(176,32);
// by ID

G=gap.SmallGroup(176,32);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,46,182,97,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D4:2D11 in TeX

׿
x
:
Z
F
o
wr
Q
<