Copied to
clipboard

G = C12:Q8:C2order 192 = 26·3

4th semidirect product of C12:Q8 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12:Q8:4C2, C4:C4.6D6, C24:C4:17C2, (C2xD4).20D6, (C2xC8).167D6, D4:C4.8S3, C12.4(C4oD4), C6.SD16:1C2, C4.22(C4oD12), C2.12(D8:S3), C6.28(C8:C22), C2.Dic12:21C2, (C2xDic3).16D4, D4:Dic3.4C2, C2.9(D4.D6), (C6xD4).26C22, C22.167(S3xD4), C4.48(D4:2S3), (C2xC24).223C22, (C2xC12).205C23, C23.12D6.2C2, C6.24(C4.4D4), C6.26(C8.C22), C4:Dic3.64C22, (C4xDic3).9C22, (C2xDic6).52C22, C3:2(C42.28C22), C2.14(C23.11D6), (C2xC6).218(C2xD4), (C2xC3:C8).11C22, (C3xC4:C4).10C22, (C3xD4:C4).12C2, (C2xC4).312(C22xS3), SmallGroup(192,324)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C12:Q8:C2
C1C3C6C12C2xC12C4xDic3C12:Q8 — C12:Q8:C2
C3C6C2xC12 — C12:Q8:C2
C1C22C2xC4D4:C4

Generators and relations for C12:Q8:C2
 G = < a,b,c,d | a12=b4=d2=1, c2=b2, bab-1=dad=a7, cac-1=a5, cbc-1=b-1, dbd=a3b-1, dcd=a6b2c >

Subgroups: 296 in 100 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xD4, C2xQ8, C3:C8, C24, Dic6, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xD4, C22xC6, C8:C4, D4:C4, D4:C4, Q8:C4, C4.4D4, C4:Q8, C2xC3:C8, C4xDic3, Dic3:C4, C4:Dic3, C6.D4, C3xC4:C4, C2xC24, C2xDic6, C2xDic6, C6xD4, C42.28C22, C6.SD16, C24:C4, C2.Dic12, D4:Dic3, C3xD4:C4, C12:Q8, C23.12D6, C12:Q8:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C4.4D4, C8:C22, C8.C22, C4oD12, S3xD4, D4:2S3, C42.28C22, C23.11D6, D8:S3, D4.D6, C12:Q8:C2

Character table of C12:Q8:C2

 class 12A2B2C2D34A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
 size 111182228121224242228844121244884444
ρ1111111111111111111111111111111    trivial
ρ21111-1111-1-1-111111-1-111-1-111-1-11111    linear of order 2
ρ31111-11111111-1111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ411111111-1-1-11-111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ5111111111-1-1-1-11111111-1-111111111    linear of order 2
ρ61111-1111-111-1-1111-1-1111111-1-11111    linear of order 2
ρ71111-11111-1-1-11111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ811111111-111-1111111-1-1-1-111-1-1-1-1-1-1    linear of order 2
ρ92222-2-12220000-1-1-111-2-200-1-1-1-11111    orthogonal lifted from D6
ρ102222-2-122-20000-1-1-1112200-1-111-1-1-1-1    orthogonal lifted from D6
ρ11222202-2-202-200222000000-2-2000000    orthogonal lifted from D4
ρ12222202-2-20-2200222000000-2-2000000    orthogonal lifted from D4
ρ1322222-12220000-1-1-1-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1422222-122-20000-1-1-1-1-1-2-200-1-1111111    orthogonal lifted from D6
ρ152-2-2202-2200000-2-2200-2i2i002-2002i2i-2i-2i    complex lifted from C4oD4
ρ162-2-2202-2200000-2-22002i-2i002-200-2i-2i2i2i    complex lifted from C4oD4
ρ172-2-22022-200000-2-2200002i-2i-22000000    complex lifted from C4oD4
ρ182-2-22022-200000-2-220000-2i2i-22000000    complex lifted from C4oD4
ρ192-2-220-1-220000011-1--3-32i-2i00-113-3ii-i-i    complex lifted from C4oD12
ρ202-2-220-1-220000011-1-3--3-2i2i00-113-3-i-iii    complex lifted from C4oD12
ρ212-2-220-1-220000011-1--3-3-2i2i00-11-33-i-iii    complex lifted from C4oD12
ρ222-2-220-1-220000011-1-3--32i-2i00-11-33ii-i-i    complex lifted from C4oD12
ρ234-44-4040000000-44-400000000000000    orthogonal lifted from C8:C22
ρ2444440-2-4-400000-2-2-200000022000000    orthogonal lifted from S3xD4
ρ254-4-440-24-40000022-20000002-2000000    symplectic lifted from D4:2S3, Schur index 2
ρ2644-4-40400000004-4-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2744-4-40-20000000-2220000000000-66-66    symplectic lifted from D4.D6, Schur index 2
ρ2844-4-40-20000000-22200000000006-66-6    symplectic lifted from D4.D6, Schur index 2
ρ294-44-40-200000002-220000000000-6--6--6-6    complex lifted from D8:S3
ρ304-44-40-200000002-220000000000--6-6-6--6    complex lifted from D8:S3

Smallest permutation representation of C12:Q8:C2
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 40 89 60)(2 47 90 55)(3 42 91 50)(4 37 92 57)(5 44 93 52)(6 39 94 59)(7 46 95 54)(8 41 96 49)(9 48 85 56)(10 43 86 51)(11 38 87 58)(12 45 88 53)(13 62 74 29)(14 69 75 36)(15 64 76 31)(16 71 77 26)(17 66 78 33)(18 61 79 28)(19 68 80 35)(20 63 81 30)(21 70 82 25)(22 65 83 32)(23 72 84 27)(24 67 73 34)
(1 22 89 83)(2 15 90 76)(3 20 91 81)(4 13 92 74)(5 18 93 79)(6 23 94 84)(7 16 95 77)(8 21 96 82)(9 14 85 75)(10 19 86 80)(11 24 87 73)(12 17 88 78)(25 49 70 41)(26 54 71 46)(27 59 72 39)(28 52 61 44)(29 57 62 37)(30 50 63 42)(31 55 64 47)(32 60 65 40)(33 53 66 45)(34 58 67 38)(35 51 68 43)(36 56 69 48)
(2 8)(4 10)(6 12)(13 74)(14 81)(15 76)(16 83)(17 78)(18 73)(19 80)(20 75)(21 82)(22 77)(23 84)(24 79)(25 34)(26 29)(27 36)(28 31)(30 33)(32 35)(37 60)(38 55)(39 50)(40 57)(41 52)(42 59)(43 54)(44 49)(45 56)(46 51)(47 58)(48 53)(61 64)(62 71)(63 66)(65 68)(67 70)(69 72)(86 92)(88 94)(90 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,40,89,60)(2,47,90,55)(3,42,91,50)(4,37,92,57)(5,44,93,52)(6,39,94,59)(7,46,95,54)(8,41,96,49)(9,48,85,56)(10,43,86,51)(11,38,87,58)(12,45,88,53)(13,62,74,29)(14,69,75,36)(15,64,76,31)(16,71,77,26)(17,66,78,33)(18,61,79,28)(19,68,80,35)(20,63,81,30)(21,70,82,25)(22,65,83,32)(23,72,84,27)(24,67,73,34), (1,22,89,83)(2,15,90,76)(3,20,91,81)(4,13,92,74)(5,18,93,79)(6,23,94,84)(7,16,95,77)(8,21,96,82)(9,14,85,75)(10,19,86,80)(11,24,87,73)(12,17,88,78)(25,49,70,41)(26,54,71,46)(27,59,72,39)(28,52,61,44)(29,57,62,37)(30,50,63,42)(31,55,64,47)(32,60,65,40)(33,53,66,45)(34,58,67,38)(35,51,68,43)(36,56,69,48), (2,8)(4,10)(6,12)(13,74)(14,81)(15,76)(16,83)(17,78)(18,73)(19,80)(20,75)(21,82)(22,77)(23,84)(24,79)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35)(37,60)(38,55)(39,50)(40,57)(41,52)(42,59)(43,54)(44,49)(45,56)(46,51)(47,58)(48,53)(61,64)(62,71)(63,66)(65,68)(67,70)(69,72)(86,92)(88,94)(90,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,40,89,60)(2,47,90,55)(3,42,91,50)(4,37,92,57)(5,44,93,52)(6,39,94,59)(7,46,95,54)(8,41,96,49)(9,48,85,56)(10,43,86,51)(11,38,87,58)(12,45,88,53)(13,62,74,29)(14,69,75,36)(15,64,76,31)(16,71,77,26)(17,66,78,33)(18,61,79,28)(19,68,80,35)(20,63,81,30)(21,70,82,25)(22,65,83,32)(23,72,84,27)(24,67,73,34), (1,22,89,83)(2,15,90,76)(3,20,91,81)(4,13,92,74)(5,18,93,79)(6,23,94,84)(7,16,95,77)(8,21,96,82)(9,14,85,75)(10,19,86,80)(11,24,87,73)(12,17,88,78)(25,49,70,41)(26,54,71,46)(27,59,72,39)(28,52,61,44)(29,57,62,37)(30,50,63,42)(31,55,64,47)(32,60,65,40)(33,53,66,45)(34,58,67,38)(35,51,68,43)(36,56,69,48), (2,8)(4,10)(6,12)(13,74)(14,81)(15,76)(16,83)(17,78)(18,73)(19,80)(20,75)(21,82)(22,77)(23,84)(24,79)(25,34)(26,29)(27,36)(28,31)(30,33)(32,35)(37,60)(38,55)(39,50)(40,57)(41,52)(42,59)(43,54)(44,49)(45,56)(46,51)(47,58)(48,53)(61,64)(62,71)(63,66)(65,68)(67,70)(69,72)(86,92)(88,94)(90,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,40,89,60),(2,47,90,55),(3,42,91,50),(4,37,92,57),(5,44,93,52),(6,39,94,59),(7,46,95,54),(8,41,96,49),(9,48,85,56),(10,43,86,51),(11,38,87,58),(12,45,88,53),(13,62,74,29),(14,69,75,36),(15,64,76,31),(16,71,77,26),(17,66,78,33),(18,61,79,28),(19,68,80,35),(20,63,81,30),(21,70,82,25),(22,65,83,32),(23,72,84,27),(24,67,73,34)], [(1,22,89,83),(2,15,90,76),(3,20,91,81),(4,13,92,74),(5,18,93,79),(6,23,94,84),(7,16,95,77),(8,21,96,82),(9,14,85,75),(10,19,86,80),(11,24,87,73),(12,17,88,78),(25,49,70,41),(26,54,71,46),(27,59,72,39),(28,52,61,44),(29,57,62,37),(30,50,63,42),(31,55,64,47),(32,60,65,40),(33,53,66,45),(34,58,67,38),(35,51,68,43),(36,56,69,48)], [(2,8),(4,10),(6,12),(13,74),(14,81),(15,76),(16,83),(17,78),(18,73),(19,80),(20,75),(21,82),(22,77),(23,84),(24,79),(25,34),(26,29),(27,36),(28,31),(30,33),(32,35),(37,60),(38,55),(39,50),(40,57),(41,52),(42,59),(43,54),(44,49),(45,56),(46,51),(47,58),(48,53),(61,64),(62,71),(63,66),(65,68),(67,70),(69,72),(86,92),(88,94),(90,96)]])

Matrix representation of C12:Q8:C2 in GL6(F73)

100000
010000
0000072
0000172
000100
0072100
,
46710000
0270000
0042624262
0011311131
0042623111
0011316242
,
1190000
46720000
00003465
00002639
0039800
00473400
,
100000
46720000
001000
000100
0000720
0000072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,1,0,0,0,0,72,72,0,0],[46,0,0,0,0,0,71,27,0,0,0,0,0,0,42,11,42,11,0,0,62,31,62,31,0,0,42,11,31,62,0,0,62,31,11,42],[1,46,0,0,0,0,19,72,0,0,0,0,0,0,0,0,39,47,0,0,0,0,8,34,0,0,34,26,0,0,0,0,65,39,0,0],[1,46,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;

C12:Q8:C2 in GAP, Magma, Sage, TeX

C_{12}\rtimes Q_8\rtimes C_2
% in TeX

G:=Group("C12:Q8:C2");
// GroupNames label

G:=SmallGroup(192,324);
// by ID

G=gap.SmallGroup(192,324);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,120,1094,135,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^4=d^2=1,c^2=b^2,b*a*b^-1=d*a*d=a^7,c*a*c^-1=a^5,c*b*c^-1=b^-1,d*b*d=a^3*b^-1,d*c*d=a^6*b^2*c>;
// generators/relations

Export

Character table of C12:Q8:C2 in TeX

׿
x
:
Z
F
o
wr
Q
<