Copied to
clipboard

G = C2xC12.10D4order 192 = 26·3

Direct product of C2 and C12.10D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xC12.10D4, (C6xQ8).10C4, C12.209(C2xD4), (C2xC12).194D4, (C2xQ8).191D6, (C2xQ8).9Dic3, (C22xQ8).9S3, C6:2(C4.10D4), (C22xC12).10C4, (C22xC4).171D6, (C22xC4).8Dic3, C12.35(C22:C4), (C2xC12).476C23, (C6xQ8).202C22, C23.38(C2xDic3), C4.12(C6.D4), C4.Dic3.46C22, C22.7(C22xDic3), (C22xC12).202C22, C22.36(C6.D4), (Q8xC2xC6).3C2, C3:3(C2xC4.10D4), C4.93(C2xC3:D4), C6.79(C2xC22:C4), (C2xC12).121(C2xC4), (C2xC4).26(C2xDic3), (C2xC4).199(C3:D4), (C2xC6).198(C22xC4), (C22xC6).137(C2xC4), (C2xC4).130(C22xS3), C2.15(C2xC6.D4), (C2xC4.Dic3).28C2, (C2xC6).116(C22:C4), SmallGroup(192,785)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C2xC12.10D4
C1C3C6C12C2xC12C4.Dic3C2xC4.Dic3 — C2xC12.10D4
C3C6C2xC6 — C2xC12.10D4
C1C22C22xC4C22xQ8

Generators and relations for C2xC12.10D4
 G = < a,b,c,d | a2=b12=1, c4=b6, d2=b9, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=b5, dcd-1=b9c3 >

Subgroups: 264 in 146 conjugacy classes, 71 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, Q8, C23, C12, C12, C2xC6, C2xC6, C2xC8, M4(2), C22xC4, C22xC4, C2xQ8, C2xQ8, C3:C8, C2xC12, C2xC12, C2xC12, C3xQ8, C22xC6, C4.10D4, C2xM4(2), C22xQ8, C2xC3:C8, C4.Dic3, C4.Dic3, C22xC12, C22xC12, C6xQ8, C6xQ8, C2xC4.10D4, C12.10D4, C2xC4.Dic3, Q8xC2xC6, C2xC12.10D4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, Dic3, D6, C22:C4, C22xC4, C2xD4, C2xDic3, C3:D4, C22xS3, C4.10D4, C2xC22:C4, C6.D4, C22xDic3, C2xC3:D4, C2xC4.10D4, C12.10D4, C2xC6.D4, C2xC12.10D4

Smallest permutation representation of C2xC12.10D4
On 96 points
Generators in S96
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 86)(14 87)(15 88)(16 89)(17 90)(18 91)(19 92)(20 93)(21 94)(22 95)(23 96)(24 85)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(43 57)(44 58)(45 59)(46 60)(47 49)(48 50)(61 84)(62 73)(63 74)(64 75)(65 76)(66 77)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 76 34 62 7 82 28 68)(2 75 35 61 8 81 29 67)(3 74 36 72 9 80 30 66)(4 73 25 71 10 79 31 65)(5 84 26 70 11 78 32 64)(6 83 27 69 12 77 33 63)(13 40 95 57 19 46 89 51)(14 39 96 56 20 45 90 50)(15 38 85 55 21 44 91 49)(16 37 86 54 22 43 92 60)(17 48 87 53 23 42 93 59)(18 47 88 52 24 41 94 58)
(1 22 10 19 7 16 4 13)(2 15 11 24 8 21 5 18)(3 20 12 17 9 14 6 23)(25 89 34 86 31 95 28 92)(26 94 35 91 32 88 29 85)(27 87 36 96 33 93 30 90)(37 68 46 65 43 62 40 71)(38 61 47 70 44 67 41 64)(39 66 48 63 45 72 42 69)(49 81 58 78 55 75 52 84)(50 74 59 83 56 80 53 77)(51 79 60 76 57 73 54 82)

G:=sub<Sym(96)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,85)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)(46,60)(47,49)(48,50)(61,84)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,76,34,62,7,82,28,68)(2,75,35,61,8,81,29,67)(3,74,36,72,9,80,30,66)(4,73,25,71,10,79,31,65)(5,84,26,70,11,78,32,64)(6,83,27,69,12,77,33,63)(13,40,95,57,19,46,89,51)(14,39,96,56,20,45,90,50)(15,38,85,55,21,44,91,49)(16,37,86,54,22,43,92,60)(17,48,87,53,23,42,93,59)(18,47,88,52,24,41,94,58), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,89,34,86,31,95,28,92)(26,94,35,91,32,88,29,85)(27,87,36,96,33,93,30,90)(37,68,46,65,43,62,40,71)(38,61,47,70,44,67,41,64)(39,66,48,63,45,72,42,69)(49,81,58,78,55,75,52,84)(50,74,59,83,56,80,53,77)(51,79,60,76,57,73,54,82)>;

G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,85)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)(46,60)(47,49)(48,50)(61,84)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,76,34,62,7,82,28,68)(2,75,35,61,8,81,29,67)(3,74,36,72,9,80,30,66)(4,73,25,71,10,79,31,65)(5,84,26,70,11,78,32,64)(6,83,27,69,12,77,33,63)(13,40,95,57,19,46,89,51)(14,39,96,56,20,45,90,50)(15,38,85,55,21,44,91,49)(16,37,86,54,22,43,92,60)(17,48,87,53,23,42,93,59)(18,47,88,52,24,41,94,58), (1,22,10,19,7,16,4,13)(2,15,11,24,8,21,5,18)(3,20,12,17,9,14,6,23)(25,89,34,86,31,95,28,92)(26,94,35,91,32,88,29,85)(27,87,36,96,33,93,30,90)(37,68,46,65,43,62,40,71)(38,61,47,70,44,67,41,64)(39,66,48,63,45,72,42,69)(49,81,58,78,55,75,52,84)(50,74,59,83,56,80,53,77)(51,79,60,76,57,73,54,82) );

G=PermutationGroup([[(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,86),(14,87),(15,88),(16,89),(17,90),(18,91),(19,92),(20,93),(21,94),(22,95),(23,96),(24,85),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(43,57),(44,58),(45,59),(46,60),(47,49),(48,50),(61,84),(62,73),(63,74),(64,75),(65,76),(66,77),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,76,34,62,7,82,28,68),(2,75,35,61,8,81,29,67),(3,74,36,72,9,80,30,66),(4,73,25,71,10,79,31,65),(5,84,26,70,11,78,32,64),(6,83,27,69,12,77,33,63),(13,40,95,57,19,46,89,51),(14,39,96,56,20,45,90,50),(15,38,85,55,21,44,91,49),(16,37,86,54,22,43,92,60),(17,48,87,53,23,42,93,59),(18,47,88,52,24,41,94,58)], [(1,22,10,19,7,16,4,13),(2,15,11,24,8,21,5,18),(3,20,12,17,9,14,6,23),(25,89,34,86,31,95,28,92),(26,94,35,91,32,88,29,85),(27,87,36,96,33,93,30,90),(37,68,46,65,43,62,40,71),(38,61,47,70,44,67,41,64),(39,66,48,63,45,72,42,69),(49,81,58,78,55,75,52,84),(50,74,59,83,56,80,53,77),(51,79,60,76,57,73,54,82)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A···6G8A···8H12A···12L
order1222223444444446···68···812···12
size1111222222244442···212···124···4

42 irreducible representations

dim111111222222244
type++++++-+-+-
imageC1C2C2C2C4C4S3D4Dic3D6Dic3D6C3:D4C4.10D4C12.10D4
kernelC2xC12.10D4C12.10D4C2xC4.Dic3Q8xC2xC6C22xC12C6xQ8C22xQ8C2xC12C22xC4C22xC4C2xQ8C2xQ8C2xC4C6C2
# reps142144142122824

Matrix representation of C2xC12.10D4 in GL6(F73)

7200000
0720000
0072000
0007200
0000720
0000072
,
0720000
1720000
000100
0072000
0000072
000010
,
70450000
4230000
000010
000001
000100
0072000
,
70450000
4230000
00005045
00004523
00452300
00232800

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,72,0],[70,42,0,0,0,0,45,3,0,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],[70,42,0,0,0,0,45,3,0,0,0,0,0,0,0,0,45,23,0,0,0,0,23,28,0,0,50,45,0,0,0,0,45,23,0,0] >;

C2xC12.10D4 in GAP, Magma, Sage, TeX

C_2\times C_{12}._{10}D_4
% in TeX

G:=Group("C2xC12.10D4");
// GroupNames label

G:=SmallGroup(192,785);
// by ID

G=gap.SmallGroup(192,785);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,422,184,297,136,1684,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=1,c^4=b^6,d^2=b^9,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^9*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<