Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3:5D4

Direct product G=NxQ with N=C2 and Q=Dic3:5D4
dρLabelID
C2xDic3:5D496C2xDic3:5D4192,1062


Non-split extensions G=N.Q with N=C2 and Q=Dic3:5D4
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3:5D4) = D6:C42central extension (φ=1)96C2.1(Dic3:5D4)192,225
C2.2(Dic3:5D4) = D12:C8central extension (φ=1)96C2.2(Dic3:5D4)192,393
C2.3(Dic3:5D4) = Dic3xC4:C4central extension (φ=1)192C2.3(Dic3:5D4)192,533
C2.4(Dic3:5D4) = C2.(C4xDic6)central stem extension (φ=1)192C2.4(Dic3:5D4)192,213
C2.5(Dic3:5D4) = (C2xC4):9D12central stem extension (φ=1)96C2.5(Dic3:5D4)192,224
C2.6(Dic3:5D4) = D6:C4:5C4central stem extension (φ=1)96C2.6(Dic3:5D4)192,228
C2.7(Dic3:5D4) = D6:3M4(2)central stem extension (φ=1)96C2.7(Dic3:5D4)192,395
C2.8(Dic3:5D4) = C12:2M4(2)central stem extension (φ=1)96C2.8(Dic3:5D4)192,397
C2.9(Dic3:5D4) = Dic3:8SD16central stem extension (φ=1)96C2.9(Dic3:5D4)192,411
C2.10(Dic3:5D4) = Dic12:9C4central stem extension (φ=1)192C2.10(Dic3:5D4)192,412
C2.11(Dic3:5D4) = D24:9C4central stem extension (φ=1)96C2.11(Dic3:5D4)192,428
C2.12(Dic3:5D4) = Dic3:5D8central stem extension (φ=1)96C2.12(Dic3:5D4)192,431
C2.13(Dic3:5D4) = Dic3:5Q16central stem extension (φ=1)192C2.13(Dic3:5D4)192,432
C2.14(Dic3:5D4) = C24:C2:C4central stem extension (φ=1)96C2.14(Dic3:5D4)192,448
C2.15(Dic3:5D4) = D24:10C4central stem extension (φ=1)484C2.15(Dic3:5D4)192,453
C2.16(Dic3:5D4) = D24:7C4central stem extension (φ=1)484C2.16(Dic3:5D4)192,454
C2.17(Dic3:5D4) = C12:(C4:C4)central stem extension (φ=1)192C2.17(Dic3:5D4)192,531
C2.18(Dic3:5D4) = (C2xD12):10C4central stem extension (φ=1)96C2.18(Dic3:5D4)192,547
C2.19(Dic3:5D4) = D6:C4:6C4central stem extension (φ=1)96C2.19(Dic3:5D4)192,548
C2.20(Dic3:5D4) = D6:C4:7C4central stem extension (φ=1)96C2.20(Dic3:5D4)192,549

׿
x
:
Z
F
o
wr
Q
<