Copied to
clipboard

G = D24:7C4order 192 = 26·3

7th semidirect product of D24 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D24:7C4, Dic12:7C4, M4(2).27D6, C3:3(C8oD8), C3:C8.38D4, C24:C2:6C4, C8.16(C4xS3), C6.56(C4xD4), C8.C4:8S3, C24.35(C2xC4), (C8xDic3):1C2, C4oD24.5C2, C4.213(S3xD4), (C2xC8).252D6, D12.C4:11C2, D12.11(C2xC4), C12.372(C2xD4), D12:C4:12C2, C12.55(C22xC4), (C2xC24).42C22, Dic6.11(C2xC4), (C2xC12).311C23, C4oD12.18C22, C2.16(Dic3:5D4), C22.2(Q8:3S3), (C4xDic3).235C22, (C3xM4(2)).29C22, C4.47(S3xC2xC4), (C3xC8.C4):5C2, (C2xC6).2(C4oD4), (C2xC3:C8).238C22, (C2xC4).414(C22xS3), SmallGroup(192,454)

Series: Derived Chief Lower central Upper central

C1C12 — D24:7C4
C1C3C6C12C2xC12C4oD12C4oD24 — D24:7C4
C3C6C12 — D24:7C4
C1C4C2xC4C8.C4

Generators and relations for D24:7C4
 G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a17, cbc-1=a22b >

Subgroups: 272 in 106 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, Q8, Dic3, C12, D6, C2xC6, C42, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C4oD4, C3:C8, C24, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C4xC8, C4wrC2, C8.C4, C8oD4, C4oD8, S3xC8, C8:S3, C24:C2, D24, Dic12, C2xC3:C8, C4xDic3, C2xC24, C3xM4(2), C4oD12, C8oD8, C8xDic3, D12:C4, C3xC8.C4, C4oD24, D12.C4, D24:7C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C22xS3, C4xD4, S3xC2xC4, S3xD4, Q8:3S3, C8oD8, Dic3:5D4, D24:7C4

Smallest permutation representation of D24:7C4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 27)(2 26)(3 25)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)
(1 19 13 7)(2 12 14 24)(3 5 15 17)(4 22 16 10)(6 8 18 20)(9 11 21 23)(25 37)(26 30)(27 47)(28 40)(29 33)(31 43)(32 36)(34 46)(35 39)(38 42)(41 45)(44 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28), (1,19,13,7)(2,12,14,24)(3,5,15,17)(4,22,16,10)(6,8,18,20)(9,11,21,23)(25,37)(26,30)(27,47)(28,40)(29,33)(31,43)(32,36)(34,46)(35,39)(38,42)(41,45)(44,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28), (1,19,13,7)(2,12,14,24)(3,5,15,17)(4,22,16,10)(6,8,18,20)(9,11,21,23)(25,37)(26,30)(27,47)(28,40)(29,33)(31,43)(32,36)(34,46)(35,39)(38,42)(41,45)(44,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27),(2,26),(3,25),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28)], [(1,19,13,7),(2,12,14,24),(3,5,15,17),(4,22,16,10),(6,8,18,20),(9,11,21,23),(25,37),(26,30),(27,47),(28,40),(29,33),(31,43),(32,36),(34,46),(35,39),(38,42),(41,45),(44,48)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B8A8B8C8D8E8F8G8H8I8J8K8L8M8N12A12B12C24A24B24C24D24E24F24G24H
order12222344444444466888888888888881212122424242424242424
size1121212211266661212242222333344446622444448888

42 irreducible representations

dim1111111112222222444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4S3D4D6D6C4oD4C4xS3C8oD8S3xD4Q8:3S3D24:7C4
kernelD24:7C4C8xDic3D12:C4C3xC8.C4C4oD24D12.C4C24:C2D24Dic12C8.C4C3:C8C2xC8M4(2)C2xC6C8C3C4C22C1
# reps1121124221212248114

Matrix representation of D24:7C4 in GL4(F73) generated by

10000
02200
0001
007272
,
07200
72000
0001
0010
,
27000
07200
0010
007272
G:=sub<GL(4,GF(73))| [10,0,0,0,0,22,0,0,0,0,0,72,0,0,1,72],[0,72,0,0,72,0,0,0,0,0,0,1,0,0,1,0],[27,0,0,0,0,72,0,0,0,0,1,72,0,0,0,72] >;

D24:7C4 in GAP, Magma, Sage, TeX

D_{24}\rtimes_7C_4
% in TeX

G:=Group("D24:7C4");
// GroupNames label

G:=SmallGroup(192,454);
// by ID

G=gap.SmallGroup(192,454);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,555,58,136,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^17,c*b*c^-1=a^22*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<