Extensions 1→N→G→Q→1 with N=C8 and Q=C3xD4

Direct product G=NxQ with N=C8 and Q=C3xD4
dρLabelID
D4xC2496D4xC24192,867

Semidirect products G=N:Q with N=C8 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C8:1(C3xD4) = C3xC8:D4φ: C3xD4/C6C22 ⊆ Aut C896C8:1(C3xD4)192,901
C8:2(C3xD4) = C3xC8:2D4φ: C3xD4/C6C22 ⊆ Aut C896C8:2(C3xD4)192,902
C8:3(C3xD4) = C3xC8:3D4φ: C3xD4/C6C22 ⊆ Aut C896C8:3(C3xD4)192,929
C8:4(C3xD4) = C3xC8:4D4φ: C3xD4/C12C2 ⊆ Aut C896C8:4(C3xD4)192,926
C8:5(C3xD4) = C3xC8:5D4φ: C3xD4/C12C2 ⊆ Aut C896C8:5(C3xD4)192,925
C8:6(C3xD4) = C3xC8:6D4φ: C3xD4/C12C2 ⊆ Aut C896C8:6(C3xD4)192,869
C8:7(C3xD4) = C3xC8:7D4φ: C3xD4/C2xC6C2 ⊆ Aut C896C8:7(C3xD4)192,899
C8:8(C3xD4) = C3xC8:8D4φ: C3xD4/C2xC6C2 ⊆ Aut C896C8:8(C3xD4)192,898
C8:9(C3xD4) = C3xC8:9D4φ: C3xD4/C2xC6C2 ⊆ Aut C896C8:9(C3xD4)192,868

Non-split extensions G=N.Q with N=C8 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C8.1(C3xD4) = C3xC8.D4φ: C3xD4/C6C22 ⊆ Aut C896C8.1(C3xD4)192,903
C8.2(C3xD4) = C3xC8.2D4φ: C3xD4/C6C22 ⊆ Aut C896C8.2(C3xD4)192,930
C8.3(C3xD4) = C3xC16:C22φ: C3xD4/C6C22 ⊆ Aut C8484C8.3(C3xD4)192,942
C8.4(C3xD4) = C3xQ32:C2φ: C3xD4/C6C22 ⊆ Aut C8964C8.4(C3xD4)192,943
C8.5(C3xD4) = C3xD32φ: C3xD4/C12C2 ⊆ Aut C8962C8.5(C3xD4)192,177
C8.6(C3xD4) = C3xSD64φ: C3xD4/C12C2 ⊆ Aut C8962C8.6(C3xD4)192,178
C8.7(C3xD4) = C3xQ64φ: C3xD4/C12C2 ⊆ Aut C81922C8.7(C3xD4)192,179
C8.8(C3xD4) = C3xC4:Q16φ: C3xD4/C12C2 ⊆ Aut C8192C8.8(C3xD4)192,927
C8.9(C3xD4) = C6xD16φ: C3xD4/C12C2 ⊆ Aut C896C8.9(C3xD4)192,938
C8.10(C3xD4) = C6xSD32φ: C3xD4/C12C2 ⊆ Aut C896C8.10(C3xD4)192,939
C8.11(C3xD4) = C6xQ32φ: C3xD4/C12C2 ⊆ Aut C8192C8.11(C3xD4)192,940
C8.12(C3xD4) = C3xC8.12D4φ: C3xD4/C12C2 ⊆ Aut C896C8.12(C3xD4)192,928
C8.13(C3xD4) = C3xC4oD16φ: C3xD4/C12C2 ⊆ Aut C8962C8.13(C3xD4)192,941
C8.14(C3xD4) = C3xC2.D16φ: C3xD4/C2xC6C2 ⊆ Aut C896C8.14(C3xD4)192,163
C8.15(C3xD4) = C3xC2.Q32φ: C3xD4/C2xC6C2 ⊆ Aut C8192C8.15(C3xD4)192,164
C8.16(C3xD4) = C3xM5(2):C2φ: C3xD4/C2xC6C2 ⊆ Aut C8484C8.16(C3xD4)192,167
C8.17(C3xD4) = C3xC8.17D4φ: C3xD4/C2xC6C2 ⊆ Aut C8964C8.17(C3xD4)192,168
C8.18(C3xD4) = C3xC8.18D4φ: C3xD4/C2xC6C2 ⊆ Aut C896C8.18(C3xD4)192,900
C8.19(C3xD4) = C3xD4.4D4φ: C3xD4/C2xC6C2 ⊆ Aut C8484C8.19(C3xD4)192,905
C8.20(C3xD4) = C3xD4.5D4φ: C3xD4/C2xC6C2 ⊆ Aut C8964C8.20(C3xD4)192,906
C8.21(C3xD4) = C3xD8.C4φ: C3xD4/C2xC6C2 ⊆ Aut C8962C8.21(C3xD4)192,165
C8.22(C3xD4) = C3xD8:2C4φ: C3xD4/C2xC6C2 ⊆ Aut C8484C8.22(C3xD4)192,166
C8.23(C3xD4) = C3xD4.3D4φ: C3xD4/C2xC6C2 ⊆ Aut C8484C8.23(C3xD4)192,904
C8.24(C3xD4) = C3xC23.C8φ: C3xD4/C2xC6C2 ⊆ Aut C8484C8.24(C3xD4)192,155
C8.25(C3xD4) = C3xC8.26D4φ: C3xD4/C2xC6C2 ⊆ Aut C8484C8.25(C3xD4)192,877
C8.26(C3xD4) = C3xC22:C16central extension (φ=1)96C8.26(C3xD4)192,154
C8.27(C3xD4) = C3xD4.C8central extension (φ=1)962C8.27(C3xD4)192,156
C8.28(C3xD4) = C3xC4:C16central extension (φ=1)192C8.28(C3xD4)192,169
C8.29(C3xD4) = C3xC8.C8central extension (φ=1)482C8.29(C3xD4)192,170
C8.30(C3xD4) = C3xC8oD8central extension (φ=1)482C8.30(C3xD4)192,876

׿
x
:
Z
F
o
wr
Q
<