Copied to
clipboard

G = C6xSD32order 192 = 26·3

Direct product of C6 and SD32

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C6xSD32, C24.69D4, C12.45D8, C48:11C22, C24.64C23, (C2xC16):7C6, C16:3(C2xC6), C4.8(C6xD4), C4.7(C3xD8), (C2xC48):14C2, Q16:1(C2xC6), (C2xQ16):6C6, D8.1(C2xC6), (C2xD8).4C6, (C2xC6).56D8, C2.13(C6xD8), C8.10(C3xD4), C6.85(C2xD8), (C6xQ16):20C2, (C6xD8).11C2, C8.4(C22xC6), (C2xC12).427D4, C12.315(C2xD4), C22.15(C3xD8), (C3xQ16):15C22, (C3xD8).11C22, (C2xC24).405C22, (C2xC8).85(C2xC6), (C2xC4).83(C3xD4), SmallGroup(192,939)

Series: Derived Chief Lower central Upper central

C1C8 — C6xSD32
C1C2C4C8C24C3xQ16C3xSD32 — C6xSD32
C1C2C4C8 — C6xSD32
C1C2xC6C2xC12C2xC24 — C6xSD32

Generators and relations for C6xSD32
 G = < a,b,c | a6=b16=c2=1, ab=ba, ac=ca, cbc=b7 >

Subgroups: 210 in 90 conjugacy classes, 50 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, C12, C12, C2xC6, C2xC6, C16, C2xC8, D8, D8, Q16, Q16, C2xD4, C2xQ8, C24, C2xC12, C2xC12, C3xD4, C3xQ8, C22xC6, C2xC16, SD32, C2xD8, C2xQ16, C48, C2xC24, C3xD8, C3xD8, C3xQ16, C3xQ16, C6xD4, C6xQ8, C2xSD32, C2xC48, C3xSD32, C6xD8, C6xQ16, C6xSD32
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, D8, C2xD4, C3xD4, C22xC6, SD32, C2xD8, C3xD8, C6xD4, C2xSD32, C3xSD32, C6xD8, C6xSD32

Smallest permutation representation of C6xSD32
On 96 points
Generators in S96
(1 56 21 46 92 66)(2 57 22 47 93 67)(3 58 23 48 94 68)(4 59 24 33 95 69)(5 60 25 34 96 70)(6 61 26 35 81 71)(7 62 27 36 82 72)(8 63 28 37 83 73)(9 64 29 38 84 74)(10 49 30 39 85 75)(11 50 31 40 86 76)(12 51 32 41 87 77)(13 52 17 42 88 78)(14 53 18 43 89 79)(15 54 19 44 90 80)(16 55 20 45 91 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 25)(18 32)(19 23)(20 30)(22 28)(24 26)(27 31)(33 35)(34 42)(36 40)(37 47)(39 45)(41 43)(44 48)(49 55)(50 62)(51 53)(52 60)(54 58)(57 63)(59 61)(65 75)(67 73)(68 80)(69 71)(70 78)(72 76)(77 79)(81 95)(82 86)(83 93)(85 91)(87 89)(88 96)(90 94)

G:=sub<Sym(96)| (1,56,21,46,92,66)(2,57,22,47,93,67)(3,58,23,48,94,68)(4,59,24,33,95,69)(5,60,25,34,96,70)(6,61,26,35,81,71)(7,62,27,36,82,72)(8,63,28,37,83,73)(9,64,29,38,84,74)(10,49,30,39,85,75)(11,50,31,40,86,76)(12,51,32,41,87,77)(13,52,17,42,88,78)(14,53,18,43,89,79)(15,54,19,44,90,80)(16,55,20,45,91,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48)(49,55)(50,62)(51,53)(52,60)(54,58)(57,63)(59,61)(65,75)(67,73)(68,80)(69,71)(70,78)(72,76)(77,79)(81,95)(82,86)(83,93)(85,91)(87,89)(88,96)(90,94)>;

G:=Group( (1,56,21,46,92,66)(2,57,22,47,93,67)(3,58,23,48,94,68)(4,59,24,33,95,69)(5,60,25,34,96,70)(6,61,26,35,81,71)(7,62,27,36,82,72)(8,63,28,37,83,73)(9,64,29,38,84,74)(10,49,30,39,85,75)(11,50,31,40,86,76)(12,51,32,41,87,77)(13,52,17,42,88,78)(14,53,18,43,89,79)(15,54,19,44,90,80)(16,55,20,45,91,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48)(49,55)(50,62)(51,53)(52,60)(54,58)(57,63)(59,61)(65,75)(67,73)(68,80)(69,71)(70,78)(72,76)(77,79)(81,95)(82,86)(83,93)(85,91)(87,89)(88,96)(90,94) );

G=PermutationGroup([[(1,56,21,46,92,66),(2,57,22,47,93,67),(3,58,23,48,94,68),(4,59,24,33,95,69),(5,60,25,34,96,70),(6,61,26,35,81,71),(7,62,27,36,82,72),(8,63,28,37,83,73),(9,64,29,38,84,74),(10,49,30,39,85,75),(11,50,31,40,86,76),(12,51,32,41,87,77),(13,52,17,42,88,78),(14,53,18,43,89,79),(15,54,19,44,90,80),(16,55,20,45,91,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,25),(18,32),(19,23),(20,30),(22,28),(24,26),(27,31),(33,35),(34,42),(36,40),(37,47),(39,45),(41,43),(44,48),(49,55),(50,62),(51,53),(52,60),(54,58),(57,63),(59,61),(65,75),(67,73),(68,80),(69,71),(70,78),(72,76),(77,79),(81,95),(82,86),(83,93),(85,91),(87,89),(88,96),(90,94)]])

66 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D6A···6F6G6H6I6J8A8B8C8D12A12B12C12D12E12F12G12H16A···16H24A···24H48A···48P
order1222223344446···666668888121212121212121216···1624···2448···48
size1111881122881···188882222222288882···22···22···2

66 irreducible representations

dim11111111112222222222
type+++++++++
imageC1C2C2C2C2C3C6C6C6C6D4D4D8D8C3xD4C3xD4SD32C3xD8C3xD8C3xSD32
kernelC6xSD32C2xC48C3xSD32C6xD8C6xQ16C2xSD32C2xC16SD32C2xD8C2xQ16C24C2xC12C12C2xC6C8C2xC4C6C4C22C2
# reps114112282211222284416

Matrix representation of C6xSD32 in GL3(F97) generated by

9600
0620
0062
,
9600
06377
01043
,
9600
010
0196
G:=sub<GL(3,GF(97))| [96,0,0,0,62,0,0,0,62],[96,0,0,0,63,10,0,77,43],[96,0,0,0,1,1,0,0,96] >;

C6xSD32 in GAP, Magma, Sage, TeX

C_6\times {\rm SD}_{32}
% in TeX

G:=Group("C6xSD32");
// GroupNames label

G:=SmallGroup(192,939);
// by ID

G=gap.SmallGroup(192,939);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,2524,1271,242,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c|a^6=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^7>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<