extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C3xD4) = C3xC2wrC4 | φ: C3xD4/C3 → D4 ⊆ Aut C2xC4 | 24 | 4 | (C2xC4).1(C3xD4) | 192,157 |
(C2xC4).2(C3xD4) = C3xC23.D4 | φ: C3xD4/C3 → D4 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).2(C3xD4) | 192,158 |
(C2xC4).3(C3xD4) = C3xC42.C4 | φ: C3xD4/C3 → D4 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).3(C3xD4) | 192,161 |
(C2xC4).4(C3xD4) = C3xC42.3C4 | φ: C3xD4/C3 → D4 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).4(C3xD4) | 192,162 |
(C2xC4).5(C3xD4) = C3xD4.8D4 | φ: C3xD4/C3 → D4 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).5(C3xD4) | 192,887 |
(C2xC4).6(C3xD4) = C3xD4.10D4 | φ: C3xD4/C3 → D4 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).6(C3xD4) | 192,889 |
(C2xC4).7(C3xD4) = C3xC23.7D4 | φ: C3xD4/C3 → D4 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).7(C3xD4) | 192,891 |
(C2xC4).8(C3xD4) = C3xC4.9C42 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).8(C3xD4) | 192,143 |
(C2xC4).9(C3xD4) = C3xC4.10C42 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).9(C3xD4) | 192,144 |
(C2xC4).10(C3xD4) = C3xD8:2C4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).10(C3xD4) | 192,166 |
(C2xC4).11(C3xD4) = C3xM5(2):C2 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).11(C3xD4) | 192,167 |
(C2xC4).12(C3xD4) = C3xC8.17D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | 4 | (C2xC4).12(C3xD4) | 192,168 |
(C2xC4).13(C3xD4) = C3xC8.Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).13(C3xD4) | 192,171 |
(C2xC4).14(C3xD4) = C3xC23:Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).14(C3xD4) | 192,826 |
(C2xC4).15(C3xD4) = C3xC23.78C23 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).15(C3xD4) | 192,828 |
(C2xC4).16(C3xD4) = C3xC23.Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).16(C3xD4) | 192,829 |
(C2xC4).17(C3xD4) = C3xC23.11D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).17(C3xD4) | 192,830 |
(C2xC4).18(C3xD4) = C3xC23.81C23 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).18(C3xD4) | 192,831 |
(C2xC4).19(C3xD4) = C3xC23.4Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).19(C3xD4) | 192,832 |
(C2xC4).20(C3xD4) = C3xC23.83C23 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).20(C3xD4) | 192,833 |
(C2xC4).21(C3xD4) = C6xC4.D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).21(C3xD4) | 192,844 |
(C2xC4).22(C3xD4) = C6xC4.10D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).22(C3xD4) | 192,845 |
(C2xC4).23(C3xD4) = C3xC23.37D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).23(C3xD4) | 192,851 |
(C2xC4).24(C3xD4) = C3xC23.38D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).24(C3xD4) | 192,852 |
(C2xC4).25(C3xD4) = C3xC42:C22 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).25(C3xD4) | 192,854 |
(C2xC4).26(C3xD4) = C3xC22:D8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).26(C3xD4) | 192,880 |
(C2xC4).27(C3xD4) = C3xQ8:D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).27(C3xD4) | 192,881 |
(C2xC4).28(C3xD4) = C3xC22:SD16 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | | (C2xC4).28(C3xD4) | 192,883 |
(C2xC4).29(C3xD4) = C3xC22:Q16 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).29(C3xD4) | 192,884 |
(C2xC4).30(C3xD4) = C3xD4.2D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).30(C3xD4) | 192,896 |
(C2xC4).31(C3xD4) = C3xQ8.D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).31(C3xD4) | 192,897 |
(C2xC4).32(C3xD4) = C3xC8:D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).32(C3xD4) | 192,901 |
(C2xC4).33(C3xD4) = C3xC8:2D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).33(C3xD4) | 192,902 |
(C2xC4).34(C3xD4) = C3xC8.D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).34(C3xD4) | 192,903 |
(C2xC4).35(C3xD4) = C3xD4.Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).35(C3xD4) | 192,911 |
(C2xC4).36(C3xD4) = C3xQ8.Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).36(C3xD4) | 192,912 |
(C2xC4).37(C3xD4) = C3xC22.D8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).37(C3xD4) | 192,913 |
(C2xC4).38(C3xD4) = C3xC23.46D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).38(C3xD4) | 192,914 |
(C2xC4).39(C3xD4) = C3xC23.47D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).39(C3xD4) | 192,916 |
(C2xC4).40(C3xD4) = C3xC23.48D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).40(C3xD4) | 192,917 |
(C2xC4).41(C3xD4) = C3xC42.28C22 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).41(C3xD4) | 192,922 |
(C2xC4).42(C3xD4) = C3xC42.29C22 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).42(C3xD4) | 192,923 |
(C2xC4).43(C3xD4) = C3xC42.30C22 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).43(C3xD4) | 192,924 |
(C2xC4).44(C3xD4) = C3xC8:3D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).44(C3xD4) | 192,929 |
(C2xC4).45(C3xD4) = C3xC8.2D4 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).45(C3xD4) | 192,930 |
(C2xC4).46(C3xD4) = C3xC8:Q8 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).46(C3xD4) | 192,934 |
(C2xC4).47(C3xD4) = C3xC16:C22 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).47(C3xD4) | 192,942 |
(C2xC4).48(C3xD4) = C3xQ32:C2 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | 4 | (C2xC4).48(C3xD4) | 192,943 |
(C2xC4).49(C3xD4) = C3xC23.38C23 | φ: C3xD4/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).49(C3xD4) | 192,1425 |
(C2xC4).50(C3xD4) = C12xD8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).50(C3xD4) | 192,870 |
(C2xC4).51(C3xD4) = C12xSD16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).51(C3xD4) | 192,871 |
(C2xC4).52(C3xD4) = C12xQ16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).52(C3xD4) | 192,872 |
(C2xC4).53(C3xD4) = C3xC8:8D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).53(C3xD4) | 192,898 |
(C2xC4).54(C3xD4) = C3xC8:7D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).54(C3xD4) | 192,899 |
(C2xC4).55(C3xD4) = C3xC8.18D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).55(C3xD4) | 192,900 |
(C2xC4).56(C3xD4) = C3xC42.78C22 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).56(C3xD4) | 192,921 |
(C2xC4).57(C3xD4) = C3xC8.12D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).57(C3xD4) | 192,928 |
(C2xC4).58(C3xD4) = C3xC8.5Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).58(C3xD4) | 192,932 |
(C2xC4).59(C3xD4) = C3xC2.D16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).59(C3xD4) | 192,163 |
(C2xC4).60(C3xD4) = C3xC2.Q32 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).60(C3xD4) | 192,164 |
(C2xC4).61(C3xD4) = C3xD8.C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | 2 | (C2xC4).61(C3xD4) | 192,165 |
(C2xC4).62(C3xD4) = C3xC16:3C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).62(C3xD4) | 192,172 |
(C2xC4).63(C3xD4) = C3xC16:4C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).63(C3xD4) | 192,173 |
(C2xC4).64(C3xD4) = C3xC8.4Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | 2 | (C2xC4).64(C3xD4) | 192,174 |
(C2xC4).65(C3xD4) = C3xC42:8C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).65(C3xD4) | 192,815 |
(C2xC4).66(C3xD4) = C3xC42:9C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).66(C3xD4) | 192,817 |
(C2xC4).67(C3xD4) = C3xC23.67C23 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).67(C3xD4) | 192,824 |
(C2xC4).68(C3xD4) = C6xD4:C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).68(C3xD4) | 192,847 |
(C2xC4).69(C3xD4) = C6xQ8:C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).69(C3xD4) | 192,848 |
(C2xC4).70(C3xD4) = C6xC4wrC2 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).70(C3xD4) | 192,853 |
(C2xC4).71(C3xD4) = C3xC4:M4(2) | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).71(C3xD4) | 192,856 |
(C2xC4).72(C3xD4) = C6xC4.Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).72(C3xD4) | 192,858 |
(C2xC4).73(C3xD4) = C6xC2.D8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).73(C3xD4) | 192,859 |
(C2xC4).74(C3xD4) = C6xC8.C4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).74(C3xD4) | 192,862 |
(C2xC4).75(C3xD4) = C3xC4.4D8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).75(C3xD4) | 192,919 |
(C2xC4).76(C3xD4) = C3xC4.SD16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).76(C3xD4) | 192,920 |
(C2xC4).77(C3xD4) = C3xC8:5D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).77(C3xD4) | 192,925 |
(C2xC4).78(C3xD4) = C3xC8:4D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).78(C3xD4) | 192,926 |
(C2xC4).79(C3xD4) = C3xC4:Q16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).79(C3xD4) | 192,927 |
(C2xC4).80(C3xD4) = C3xC8:3Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).80(C3xD4) | 192,931 |
(C2xC4).81(C3xD4) = C3xC8:2Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).81(C3xD4) | 192,933 |
(C2xC4).82(C3xD4) = C6xD16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).82(C3xD4) | 192,938 |
(C2xC4).83(C3xD4) = C6xSD32 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).83(C3xD4) | 192,939 |
(C2xC4).84(C3xD4) = C6xQ32 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).84(C3xD4) | 192,940 |
(C2xC4).85(C3xD4) = C3xC4oD16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | 2 | (C2xC4).85(C3xD4) | 192,941 |
(C2xC4).86(C3xD4) = C6xC4.4D4 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).86(C3xD4) | 192,1415 |
(C2xC4).87(C3xD4) = C6xC4:Q8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).87(C3xD4) | 192,1420 |
(C2xC4).88(C3xD4) = C2xC6xD8 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).88(C3xD4) | 192,1458 |
(C2xC4).89(C3xD4) = C2xC6xSD16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).89(C3xD4) | 192,1459 |
(C2xC4).90(C3xD4) = C2xC6xQ16 | φ: C3xD4/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).90(C3xD4) | 192,1460 |
(C2xC4).91(C3xD4) = C3xC23:C8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).91(C3xD4) | 192,129 |
(C2xC4).92(C3xD4) = C3xC22.M4(2) | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).92(C3xD4) | 192,130 |
(C2xC4).93(C3xD4) = C3xD4:C8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).93(C3xD4) | 192,131 |
(C2xC4).94(C3xD4) = C3xQ8:C8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).94(C3xD4) | 192,132 |
(C2xC4).95(C3xD4) = C3xC22.SD16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).95(C3xD4) | 192,133 |
(C2xC4).96(C3xD4) = C3xC23.31D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).96(C3xD4) | 192,134 |
(C2xC4).97(C3xD4) = C3xC42.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).97(C3xD4) | 192,135 |
(C2xC4).98(C3xD4) = C3xC42.2C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).98(C3xD4) | 192,136 |
(C2xC4).99(C3xD4) = C3xC23.8Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).99(C3xD4) | 192,818 |
(C2xC4).100(C3xD4) = C3xC23.63C23 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).100(C3xD4) | 192,820 |
(C2xC4).101(C3xD4) = C3xC24.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).101(C3xD4) | 192,821 |
(C2xC4).102(C3xD4) = C3xSD16:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).102(C3xD4) | 192,873 |
(C2xC4).103(C3xD4) = C3xQ16:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).103(C3xD4) | 192,874 |
(C2xC4).104(C3xD4) = C3xD8:C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).104(C3xD4) | 192,875 |
(C2xC4).105(C3xD4) = C3xD4:D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).105(C3xD4) | 192,882 |
(C2xC4).106(C3xD4) = C3xD4.7D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).106(C3xD4) | 192,885 |
(C2xC4).107(C3xD4) = C3xC23.19D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).107(C3xD4) | 192,915 |
(C2xC4).108(C3xD4) = C3xC23.20D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).108(C3xD4) | 192,918 |
(C2xC4).109(C3xD4) = C3xC4.D8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).109(C3xD4) | 192,137 |
(C2xC4).110(C3xD4) = C3xC4.10D8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).110(C3xD4) | 192,138 |
(C2xC4).111(C3xD4) = C3xC4.6Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).111(C3xD4) | 192,139 |
(C2xC4).112(C3xD4) = C3xC22.4Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).112(C3xD4) | 192,146 |
(C2xC4).113(C3xD4) = C3xC4.C42 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).113(C3xD4) | 192,147 |
(C2xC4).114(C3xD4) = C3xC22.C42 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).114(C3xD4) | 192,149 |
(C2xC4).115(C3xD4) = C3xM4(2):4C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).115(C3xD4) | 192,150 |
(C2xC4).116(C3xD4) = C3xC23.7Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).116(C3xD4) | 192,813 |
(C2xC4).117(C3xD4) = C3xC23.65C23 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).117(C3xD4) | 192,822 |
(C2xC4).118(C3xD4) = C3xC24.4C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).118(C3xD4) | 192,840 |
(C2xC4).119(C3xD4) = C3x(C22xC8):C2 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).119(C3xD4) | 192,841 |
(C2xC4).120(C3xD4) = C3xC23.C23 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).120(C3xD4) | 192,843 |
(C2xC4).121(C3xD4) = C3xM4(2).8C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).121(C3xD4) | 192,846 |
(C2xC4).122(C3xD4) = C3xC23.24D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).122(C3xD4) | 192,849 |
(C2xC4).123(C3xD4) = C3xC23.36D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).123(C3xD4) | 192,850 |
(C2xC4).124(C3xD4) = C3xC42.6C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).124(C3xD4) | 192,857 |
(C2xC4).125(C3xD4) = C3xM4(2):C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).125(C3xD4) | 192,861 |
(C2xC4).126(C3xD4) = C3xM4(2).C4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).126(C3xD4) | 192,863 |
(C2xC4).127(C3xD4) = C3xC4:D8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).127(C3xD4) | 192,892 |
(C2xC4).128(C3xD4) = C3xC4:SD16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).128(C3xD4) | 192,893 |
(C2xC4).129(C3xD4) = C3xD4.D4 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).129(C3xD4) | 192,894 |
(C2xC4).130(C3xD4) = C3xC4:2Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).130(C3xD4) | 192,895 |
(C2xC4).131(C3xD4) = C3xD4:Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).131(C3xD4) | 192,907 |
(C2xC4).132(C3xD4) = C3xQ8:Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).132(C3xD4) | 192,908 |
(C2xC4).133(C3xD4) = C3xD4:2Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).133(C3xD4) | 192,909 |
(C2xC4).134(C3xD4) = C3xC4.Q16 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).134(C3xD4) | 192,910 |
(C2xC4).135(C3xD4) = C6xC22:Q8 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).135(C3xD4) | 192,1412 |
(C2xC4).136(C3xD4) = C6xC8:C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).136(C3xD4) | 192,1462 |
(C2xC4).137(C3xD4) = C6xC8.C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).137(C3xD4) | 192,1463 |
(C2xC4).138(C3xD4) = C3xD8:C22 | φ: C3xD4/C2xC6 → C2 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).138(C3xD4) | 192,1464 |
(C2xC4).139(C3xD4) = C3xC8:2C8 | central extension (φ=1) | 192 | | (C2xC4).139(C3xD4) | 192,140 |
(C2xC4).140(C3xD4) = C3xC8:1C8 | central extension (φ=1) | 192 | | (C2xC4).140(C3xD4) | 192,141 |
(C2xC4).141(C3xD4) = C3xC22.7C42 | central extension (φ=1) | 192 | | (C2xC4).141(C3xD4) | 192,142 |
(C2xC4).142(C3xD4) = C3xC42:6C4 | central extension (φ=1) | 48 | | (C2xC4).142(C3xD4) | 192,145 |
(C2xC4).143(C3xD4) = C12xC22:C4 | central extension (φ=1) | 96 | | (C2xC4).143(C3xD4) | 192,810 |
(C2xC4).144(C3xD4) = C12xC4:C4 | central extension (φ=1) | 192 | | (C2xC4).144(C3xD4) | 192,811 |
(C2xC4).145(C3xD4) = C6xC22:C8 | central extension (φ=1) | 96 | | (C2xC4).145(C3xD4) | 192,839 |
(C2xC4).146(C3xD4) = C6xC4:C8 | central extension (φ=1) | 192 | | (C2xC4).146(C3xD4) | 192,855 |
(C2xC4).147(C3xD4) = C3xC23.25D4 | central extension (φ=1) | 96 | | (C2xC4).147(C3xD4) | 192,860 |
(C2xC4).148(C3xD4) = C6xC4oD8 | central extension (φ=1) | 96 | | (C2xC4).148(C3xD4) | 192,1461 |