Extensions 1→N→G→Q→1 with N=C2xQ8:3S3 and Q=C2

Direct product G=NxQ with N=C2xQ8:3S3 and Q=C2
dρLabelID
C22xQ8:3S396C2^2xQ8:3S3192,1518

Semidirect products G=N:Q with N=C2xQ8:3S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8:3S3):1C2 = Q8:4D12φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):1C2192,369
(C2xQ8:3S3):2C2 = D12:7D4φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):2C2192,731
(C2xQ8:3S3):3C2 = Q8:6D12φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):3C2192,1135
(C2xQ8:3S3):4C2 = Q8:7D12φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):4C2192,1136
(C2xQ8:3S3):5C2 = C4:C4:26D6φ: C2/C1C2 ⊆ Out C2xQ8:3S348(C2xQ8:3S3):5C2192,1186
(C2xQ8:3S3):6C2 = C6.172- 1+4φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):6C2192,1188
(C2xQ8:3S3):7C2 = D12:21D4φ: C2/C1C2 ⊆ Out C2xQ8:3S348(C2xQ8:3S3):7C2192,1189
(C2xQ8:3S3):8C2 = D12:22D4φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):8C2192,1190
(C2xQ8:3S3):9C2 = C42.233D6φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):9C2192,1227
(C2xQ8:3S3):10C2 = C42:20D6φ: C2/C1C2 ⊆ Out C2xQ8:3S348(C2xQ8:3S3):10C2192,1233
(C2xQ8:3S3):11C2 = D12:10D4φ: C2/C1C2 ⊆ Out C2xQ8:3S348(C2xQ8:3S3):11C2192,1235
(C2xQ8:3S3):12C2 = C42.240D6φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):12C2192,1284
(C2xQ8:3S3):13C2 = D12:12D4φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):13C2192,1285
(C2xQ8:3S3):14C2 = C2xQ8:3D6φ: C2/C1C2 ⊆ Out C2xQ8:3S348(C2xQ8:3S3):14C2192,1318
(C2xQ8:3S3):15C2 = C2xQ8.7D6φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):15C2192,1320
(C2xQ8:3S3):16C2 = C2xD24:C2φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):16C2192,1324
(C2xQ8:3S3):17C2 = D24:C22φ: C2/C1C2 ⊆ Out C2xQ8:3S3488+(C2xQ8:3S3):17C2192,1336
(C2xQ8:3S3):18C2 = C6.452- 1+4φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):18C2192,1376
(C2xQ8:3S3):19C2 = C6.1482+ 1+4φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):19C2192,1393
(C2xQ8:3S3):20C2 = C2xQ8.15D6φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3):20C2192,1519
(C2xQ8:3S3):21C2 = C2xD4oD12φ: C2/C1C2 ⊆ Out C2xQ8:3S348(C2xQ8:3S3):21C2192,1521
(C2xQ8:3S3):22C2 = D12.39C23φ: C2/C1C2 ⊆ Out C2xQ8:3S3488+(C2xQ8:3S3):22C2192,1527
(C2xQ8:3S3):23C2 = C2xS3xC4oD4φ: trivial image48(C2xQ8:3S3):23C2192,1520

Non-split extensions G=N.Q with N=C2xQ8:3S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8:3S3).1C2 = M4(2).21D6φ: C2/C1C2 ⊆ Out C2xQ8:3S3488+(C2xQ8:3S3).1C2192,310
(C2xQ8:3S3).2C2 = Q8:7(C4xS3)φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3).2C2192,362
(C2xQ8:3S3).3C2 = C4:C4.150D6φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3).3C2192,363
(C2xQ8:3S3).4C2 = Q8.11D12φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3).4C2192,367
(C2xQ8:3S3).5C2 = D12.17D4φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3).5C2192,746
(C2xQ8:3S3).6C2 = C42.126D6φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3).6C2192,1133
(C2xQ8:3S3).7C2 = C42.171D6φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3).7C2192,1283
(C2xQ8:3S3).8C2 = C2xQ16:S3φ: C2/C1C2 ⊆ Out C2xQ8:3S396(C2xQ8:3S3).8C2192,1323
(C2xQ8:3S3).9C2 = C4xQ8:3S3φ: trivial image96(C2xQ8:3S3).9C2192,1132

׿
x
:
Z
F
o
wr
Q
<