Copied to
clipboard

G = D12:12D4order 192 = 26·3

5th semidirect product of D12 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:12D4, C42.172D6, C6.352- 1+4, C4:Q8:10S3, C4.73(S3xD4), (C4xD12):51C2, C12:7(C4oD4), C3:7(D4:6D4), C4:C4.123D6, D6.25(C2xD4), C12.71(C2xD4), C12:D4:40C2, D6:3Q8:35C2, C4:2(Q8:3S3), (C2xQ8).169D6, D6.D4:46C2, (C2xC6).270C24, C6.100(C22xD4), (C2xC12).103C23, (C4xC12).211C22, D6:C4.151C22, (C6xQ8).137C22, (C2xD12).271C22, Dic3:C4.60C22, C4:Dic3.384C22, C22.291(S3xC23), (C22xS3).231C23, C2.36(Q8.15D6), (C2xDic3).141C23, (S3xC4:C4):44C2, C2.73(C2xS3xD4), (C3xC4:Q8):12C2, C6.121(C2xC4oD4), (C2xQ8:3S3):13C2, (S3xC2xC4).144C22, (C2xC4).93(C22xS3), C2.28(C2xQ8:3S3), (C3xC4:C4).213C22, SmallGroup(192,1285)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D12:12D4
C1C3C6C2xC6C22xS3S3xC2xC4S3xC4:C4 — D12:12D4
C3C2xC6 — D12:12D4
C1C22C4:Q8

Generators and relations for D12:12D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, dbd=a10b, dcd=c-1 >

Subgroups: 768 in 292 conjugacy classes, 107 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C4oD4, C4xS3, D12, D12, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C2xC4:C4, C4xD4, C4:D4, C22:Q8, C22.D4, C4:Q8, C2xC4oD4, Dic3:C4, C4:Dic3, D6:C4, C4xC12, C3xC4:C4, S3xC2xC4, C2xD12, C2xD12, Q8:3S3, C6xQ8, D4:6D4, C4xD12, S3xC4:C4, D6.D4, C12:D4, D6:3Q8, C3xC4:Q8, C2xQ8:3S3, D12:12D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C24, C22xS3, C22xD4, C2xC4oD4, 2- 1+4, S3xD4, Q8:3S3, S3xC23, D4:6D4, C2xS3xD4, C2xQ8:3S3, Q8.15D6, D12:12D4

Smallest permutation representation of D12:12D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 14)(2 13)(3 24)(4 23)(5 22)(6 21)(7 20)(8 19)(9 18)(10 17)(11 16)(12 15)(25 63)(26 62)(27 61)(28 72)(29 71)(30 70)(31 69)(32 68)(33 67)(34 66)(35 65)(36 64)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(48 60)(73 87)(74 86)(75 85)(76 96)(77 95)(78 94)(79 93)(80 92)(81 91)(82 90)(83 89)(84 88)
(1 73 48 68)(2 74 37 69)(3 75 38 70)(4 76 39 71)(5 77 40 72)(6 78 41 61)(7 79 42 62)(8 80 43 63)(9 81 44 64)(10 82 45 65)(11 83 46 66)(12 84 47 67)(13 86 59 31)(14 87 60 32)(15 88 49 33)(16 89 50 34)(17 90 51 35)(18 91 52 36)(19 92 53 25)(20 93 54 26)(21 94 55 27)(22 95 56 28)(23 96 57 29)(24 85 58 30)
(1 48)(2 41)(3 46)(4 39)(5 44)(6 37)(7 42)(8 47)(9 40)(10 45)(11 38)(12 43)(13 57)(14 50)(15 55)(16 60)(17 53)(18 58)(19 51)(20 56)(21 49)(22 54)(23 59)(24 52)(25 35)(26 28)(27 33)(29 31)(30 36)(32 34)(61 69)(63 67)(64 72)(66 70)(74 78)(75 83)(77 81)(80 84)(85 91)(86 96)(87 89)(88 94)(90 92)(93 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,14)(2,13)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17)(11,16)(12,15)(25,63)(26,62)(27,61)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(48,60)(73,87)(74,86)(75,85)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88), (1,73,48,68)(2,74,37,69)(3,75,38,70)(4,76,39,71)(5,77,40,72)(6,78,41,61)(7,79,42,62)(8,80,43,63)(9,81,44,64)(10,82,45,65)(11,83,46,66)(12,84,47,67)(13,86,59,31)(14,87,60,32)(15,88,49,33)(16,89,50,34)(17,90,51,35)(18,91,52,36)(19,92,53,25)(20,93,54,26)(21,94,55,27)(22,95,56,28)(23,96,57,29)(24,85,58,30), (1,48)(2,41)(3,46)(4,39)(5,44)(6,37)(7,42)(8,47)(9,40)(10,45)(11,38)(12,43)(13,57)(14,50)(15,55)(16,60)(17,53)(18,58)(19,51)(20,56)(21,49)(22,54)(23,59)(24,52)(25,35)(26,28)(27,33)(29,31)(30,36)(32,34)(61,69)(63,67)(64,72)(66,70)(74,78)(75,83)(77,81)(80,84)(85,91)(86,96)(87,89)(88,94)(90,92)(93,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,14)(2,13)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17)(11,16)(12,15)(25,63)(26,62)(27,61)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(48,60)(73,87)(74,86)(75,85)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88), (1,73,48,68)(2,74,37,69)(3,75,38,70)(4,76,39,71)(5,77,40,72)(6,78,41,61)(7,79,42,62)(8,80,43,63)(9,81,44,64)(10,82,45,65)(11,83,46,66)(12,84,47,67)(13,86,59,31)(14,87,60,32)(15,88,49,33)(16,89,50,34)(17,90,51,35)(18,91,52,36)(19,92,53,25)(20,93,54,26)(21,94,55,27)(22,95,56,28)(23,96,57,29)(24,85,58,30), (1,48)(2,41)(3,46)(4,39)(5,44)(6,37)(7,42)(8,47)(9,40)(10,45)(11,38)(12,43)(13,57)(14,50)(15,55)(16,60)(17,53)(18,58)(19,51)(20,56)(21,49)(22,54)(23,59)(24,52)(25,35)(26,28)(27,33)(29,31)(30,36)(32,34)(61,69)(63,67)(64,72)(66,70)(74,78)(75,83)(77,81)(80,84)(85,91)(86,96)(87,89)(88,94)(90,92)(93,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,14),(2,13),(3,24),(4,23),(5,22),(6,21),(7,20),(8,19),(9,18),(10,17),(11,16),(12,15),(25,63),(26,62),(27,61),(28,72),(29,71),(30,70),(31,69),(32,68),(33,67),(34,66),(35,65),(36,64),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(48,60),(73,87),(74,86),(75,85),(76,96),(77,95),(78,94),(79,93),(80,92),(81,91),(82,90),(83,89),(84,88)], [(1,73,48,68),(2,74,37,69),(3,75,38,70),(4,76,39,71),(5,77,40,72),(6,78,41,61),(7,79,42,62),(8,80,43,63),(9,81,44,64),(10,82,45,65),(11,83,46,66),(12,84,47,67),(13,86,59,31),(14,87,60,32),(15,88,49,33),(16,89,50,34),(17,90,51,35),(18,91,52,36),(19,92,53,25),(20,93,54,26),(21,94,55,27),(22,95,56,28),(23,96,57,29),(24,85,58,30)], [(1,48),(2,41),(3,46),(4,39),(5,44),(6,37),(7,42),(8,47),(9,40),(10,45),(11,38),(12,43),(13,57),(14,50),(15,55),(16,60),(17,53),(18,58),(19,51),(20,56),(21,49),(22,54),(23,59),(24,52),(25,35),(26,28),(27,33),(29,31),(30,36),(32,34),(61,69),(63,67),(64,72),(66,70),(74,78),(75,83),(77,81),(80,84),(85,91),(86,96),(87,89),(88,94),(90,92),(93,95)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E···4I4J4K4L4M4N4O6A6B6C12A···12F12G12H12I12J
order1222222222344444···444444466612···1212121212
size111166661212222224···4666612122224···48888

39 irreducible representations

dim111111112222224444
type+++++++++++++-++
imageC1C2C2C2C2C2C2C2S3D4D6D6D6C4oD42- 1+4S3xD4Q8:3S3Q8.15D6
kernelD12:12D4C4xD12S3xC4:C4D6.D4C12:D4D6:3Q8C3xC4:Q8C2xQ8:3S3C4:Q8D12C42C4:C4C2xQ8C12C6C4C4C2
# reps122422121414241222

Matrix representation of D12:12D4 in GL6(F13)

800000
050000
000100
0012100
0000120
0000012
,
010000
100000
0012100
000100
000010
000001
,
1200000
0120000
0012000
0001200
000052
000008
,
100000
0120000
000100
001000
0000120
000051

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,2,8],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,5,0,0,0,0,0,1] >;

D12:12D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{12}D_4
% in TeX

G:=Group("D12:12D4");
// GroupNames label

G:=SmallGroup(192,1285);
// by ID

G=gap.SmallGroup(192,1285);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,1571,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<