Extensions 1→N→G→Q→1 with N=C6 and Q=C2xSD16

Direct product G=NxQ with N=C6 and Q=C2xSD16
dρLabelID
C2xC6xSD1696C2xC6xSD16192,1459

Semidirect products G=N:Q with N=C6 and Q=C2xSD16
extensionφ:Q→Aut NdρLabelID
C6:1(C2xSD16) = C22xC24:C2φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6:1(C2xSD16)192,1298
C6:2(C2xSD16) = C2xS3xSD16φ: C2xSD16/SD16C2 ⊆ Aut C648C6:2(C2xSD16)192,1317
C6:3(C2xSD16) = C22xD4.S3φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6:3(C2xSD16)192,1353
C6:4(C2xSD16) = C22xQ8:2S3φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6:4(C2xSD16)192,1366

Non-split extensions G=N.Q with N=C6 and Q=C2xSD16
extensionφ:Q→Aut NdρLabelID
C6.1(C2xSD16) = C24:9Q8φ: C2xSD16/C2xC8C2 ⊆ Aut C6192C6.1(C2xSD16)192,239
C6.2(C2xSD16) = C12.14Q16φ: C2xSD16/C2xC8C2 ⊆ Aut C6192C6.2(C2xSD16)192,240
C6.3(C2xSD16) = C4xC24:C2φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.3(C2xSD16)192,250
C6.4(C2xSD16) = C8:5D12φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.4(C2xSD16)192,252
C6.5(C2xSD16) = C4.5D24φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.5(C2xSD16)192,253
C6.6(C2xSD16) = C23.39D12φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.6(C2xSD16)192,280
C6.7(C2xSD16) = D12.31D4φ: C2xSD16/C2xC8C2 ⊆ Aut C648C6.7(C2xSD16)192,290
C6.8(C2xSD16) = C23.43D12φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.8(C2xSD16)192,294
C6.9(C2xSD16) = Dic6:14D4φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.9(C2xSD16)192,297
C6.10(C2xSD16) = C12:SD16φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.10(C2xSD16)192,400
C6.11(C2xSD16) = D12:3Q8φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.11(C2xSD16)192,401
C6.12(C2xSD16) = Dic6:8D4φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.12(C2xSD16)192,407
C6.13(C2xSD16) = Dic6:4Q8φ: C2xSD16/C2xC8C2 ⊆ Aut C6192C6.13(C2xSD16)192,410
C6.14(C2xSD16) = C2xC2.Dic12φ: C2xSD16/C2xC8C2 ⊆ Aut C6192C6.14(C2xSD16)192,662
C6.15(C2xSD16) = C2xC8:Dic3φ: C2xSD16/C2xC8C2 ⊆ Aut C6192C6.15(C2xSD16)192,663
C6.16(C2xSD16) = C2xC2.D24φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.16(C2xSD16)192,671
C6.17(C2xSD16) = C24:30D4φ: C2xSD16/C2xC8C2 ⊆ Aut C696C6.17(C2xSD16)192,673
C6.18(C2xSD16) = Dic3:6SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.18(C2xSD16)192,317
C6.19(C2xSD16) = Dic3.SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.19(C2xSD16)192,319
C6.20(C2xSD16) = D4:Dic6φ: C2xSD16/SD16C2 ⊆ Aut C696C6.20(C2xSD16)192,320
C6.21(C2xSD16) = Dic6:2D4φ: C2xSD16/SD16C2 ⊆ Aut C696C6.21(C2xSD16)192,321
C6.22(C2xSD16) = S3xD4:C4φ: C2xSD16/SD16C2 ⊆ Aut C648C6.22(C2xSD16)192,328
C6.23(C2xSD16) = D6:5SD16φ: C2xSD16/SD16C2 ⊆ Aut C648C6.23(C2xSD16)192,335
C6.24(C2xSD16) = D6.SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.24(C2xSD16)192,336
C6.25(C2xSD16) = D6:SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.25(C2xSD16)192,337
C6.26(C2xSD16) = Dic3:7SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.26(C2xSD16)192,347
C6.27(C2xSD16) = Q8:2Dic6φ: C2xSD16/SD16C2 ⊆ Aut C6192C6.27(C2xSD16)192,350
C6.28(C2xSD16) = Dic3.1Q16φ: C2xSD16/SD16C2 ⊆ Aut C6192C6.28(C2xSD16)192,351
C6.29(C2xSD16) = S3xQ8:C4φ: C2xSD16/SD16C2 ⊆ Aut C696C6.29(C2xSD16)192,360
C6.30(C2xSD16) = D6.1SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.30(C2xSD16)192,364
C6.31(C2xSD16) = Q8:3D12φ: C2xSD16/SD16C2 ⊆ Aut C696C6.31(C2xSD16)192,365
C6.32(C2xSD16) = D6:2SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.32(C2xSD16)192,366
C6.33(C2xSD16) = Dic3:SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.33(C2xSD16)192,377
C6.34(C2xSD16) = Dic3:8SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.34(C2xSD16)192,411
C6.35(C2xSD16) = Dic6:Q8φ: C2xSD16/SD16C2 ⊆ Aut C6192C6.35(C2xSD16)192,413
C6.36(C2xSD16) = C24:5Q8φ: C2xSD16/SD16C2 ⊆ Aut C6192C6.36(C2xSD16)192,414
C6.37(C2xSD16) = S3xC4.Q8φ: C2xSD16/SD16C2 ⊆ Aut C696C6.37(C2xSD16)192,418
C6.38(C2xSD16) = D6.2SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.38(C2xSD16)192,421
C6.39(C2xSD16) = D6.4SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.39(C2xSD16)192,422
C6.40(C2xSD16) = C8:8D12φ: C2xSD16/SD16C2 ⊆ Aut C696C6.40(C2xSD16)192,423
C6.41(C2xSD16) = D12:Q8φ: C2xSD16/SD16C2 ⊆ Aut C696C6.41(C2xSD16)192,429
C6.42(C2xSD16) = Dic3xSD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.42(C2xSD16)192,720
C6.43(C2xSD16) = Dic3:3SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.43(C2xSD16)192,721
C6.44(C2xSD16) = Dic3:5SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.44(C2xSD16)192,722
C6.45(C2xSD16) = D6:6SD16φ: C2xSD16/SD16C2 ⊆ Aut C648C6.45(C2xSD16)192,728
C6.46(C2xSD16) = D6:8SD16φ: C2xSD16/SD16C2 ⊆ Aut C696C6.46(C2xSD16)192,729
C6.47(C2xSD16) = C24:14D4φ: C2xSD16/SD16C2 ⊆ Aut C696C6.47(C2xSD16)192,730
C6.48(C2xSD16) = C24:15D4φ: C2xSD16/SD16C2 ⊆ Aut C696C6.48(C2xSD16)192,734
C6.49(C2xSD16) = C2xC6.SD16φ: C2xSD16/C2xD4C2 ⊆ Aut C6192C6.49(C2xSD16)192,528
C6.50(C2xSD16) = C4:C4.231D6φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.50(C2xSD16)192,530
C6.51(C2xSD16) = C12.38SD16φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.51(C2xSD16)192,567
C6.52(C2xSD16) = C4xD4.S3φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.52(C2xSD16)192,576
C6.53(C2xSD16) = D4.2D12φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.53(C2xSD16)192,578
C6.54(C2xSD16) = C4:D4.S3φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.54(C2xSD16)192,593
C6.55(C2xSD16) = Dic6:17D4φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.55(C2xSD16)192,599
C6.56(C2xSD16) = C3:C8:23D4φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.56(C2xSD16)192,600
C6.57(C2xSD16) = C12.16D8φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.57(C2xSD16)192,629
C6.58(C2xSD16) = Dic6:9D4φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.58(C2xSD16)192,634
C6.59(C2xSD16) = C12:4SD16φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.59(C2xSD16)192,635
C6.60(C2xSD16) = C12.SD16φ: C2xSD16/C2xD4C2 ⊆ Aut C6192C6.60(C2xSD16)192,639
C6.61(C2xSD16) = C12.Q16φ: C2xSD16/C2xD4C2 ⊆ Aut C6192C6.61(C2xSD16)192,652
C6.62(C2xSD16) = Dic6:6Q8φ: C2xSD16/C2xD4C2 ⊆ Aut C6192C6.62(C2xSD16)192,653
C6.63(C2xSD16) = C2xD4:Dic3φ: C2xSD16/C2xD4C2 ⊆ Aut C696C6.63(C2xSD16)192,773
C6.64(C2xSD16) = (C3xD4).31D4φ: C2xSD16/C2xD4C2 ⊆ Aut C648C6.64(C2xSD16)192,777
C6.65(C2xSD16) = C2xC12.Q8φ: C2xSD16/C2xQ8C2 ⊆ Aut C6192C6.65(C2xSD16)192,522
C6.66(C2xSD16) = C2xC6.D8φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.66(C2xSD16)192,524
C6.67(C2xSD16) = C4:C4.228D6φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.67(C2xSD16)192,527
C6.68(C2xSD16) = Q8:4Dic6φ: C2xSD16/C2xQ8C2 ⊆ Aut C6192C6.68(C2xSD16)192,579
C6.69(C2xSD16) = C4xQ8:2S3φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.69(C2xSD16)192,584
C6.70(C2xSD16) = Q8:2D12φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.70(C2xSD16)192,586
C6.71(C2xSD16) = (C2xQ8).49D6φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.71(C2xSD16)192,602
C6.72(C2xSD16) = D12.36D4φ: C2xSD16/C2xQ8C2 ⊆ Aut C648C6.72(C2xSD16)192,605
C6.73(C2xSD16) = C3:C8:24D4φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.73(C2xSD16)192,607
C6.74(C2xSD16) = C12.9Q16φ: C2xSD16/C2xQ8C2 ⊆ Aut C6192C6.74(C2xSD16)192,638
C6.75(C2xSD16) = C12:5SD16φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.75(C2xSD16)192,642
C6.76(C2xSD16) = D12:5Q8φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.76(C2xSD16)192,643
C6.77(C2xSD16) = C12:6SD16φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.77(C2xSD16)192,644
C6.78(C2xSD16) = C12.D8φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.78(C2xSD16)192,647
C6.79(C2xSD16) = C2xQ8:2Dic3φ: C2xSD16/C2xQ8C2 ⊆ Aut C6192C6.79(C2xSD16)192,783
C6.80(C2xSD16) = (C3xQ8):13D4φ: C2xSD16/C2xQ8C2 ⊆ Aut C696C6.80(C2xSD16)192,786
C6.81(C2xSD16) = C6xD4:C4central extension (φ=1)96C6.81(C2xSD16)192,847
C6.82(C2xSD16) = C6xQ8:C4central extension (φ=1)192C6.82(C2xSD16)192,848
C6.83(C2xSD16) = C6xC4.Q8central extension (φ=1)192C6.83(C2xSD16)192,858
C6.84(C2xSD16) = C12xSD16central extension (φ=1)96C6.84(C2xSD16)192,871
C6.85(C2xSD16) = C3xQ8:D4central extension (φ=1)96C6.85(C2xSD16)192,881
C6.86(C2xSD16) = C3xC22:SD16central extension (φ=1)48C6.86(C2xSD16)192,883
C6.87(C2xSD16) = C3xC4:SD16central extension (φ=1)96C6.87(C2xSD16)192,893
C6.88(C2xSD16) = C3xD4.D4central extension (φ=1)96C6.88(C2xSD16)192,894
C6.89(C2xSD16) = C3xC8:8D4central extension (φ=1)96C6.89(C2xSD16)192,898
C6.90(C2xSD16) = C3xQ8:Q8central extension (φ=1)192C6.90(C2xSD16)192,908
C6.91(C2xSD16) = C3xD4:2Q8central extension (φ=1)96C6.91(C2xSD16)192,909
C6.92(C2xSD16) = C3xC23.46D4central extension (φ=1)96C6.92(C2xSD16)192,914
C6.93(C2xSD16) = C3xC23.47D4central extension (φ=1)96C6.93(C2xSD16)192,916
C6.94(C2xSD16) = C3xC4.4D8central extension (φ=1)96C6.94(C2xSD16)192,919
C6.95(C2xSD16) = C3xC4.SD16central extension (φ=1)192C6.95(C2xSD16)192,920
C6.96(C2xSD16) = C3xC8:5D4central extension (φ=1)96C6.96(C2xSD16)192,925
C6.97(C2xSD16) = C3xC8:3Q8central extension (φ=1)192C6.97(C2xSD16)192,931

׿
x
:
Z
F
o
wr
Q
<