extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2xSD16) = C24:9Q8 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.1(C2xSD16) | 192,239 |
C6.2(C2xSD16) = C12.14Q16 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.2(C2xSD16) | 192,240 |
C6.3(C2xSD16) = C4xC24:C2 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.3(C2xSD16) | 192,250 |
C6.4(C2xSD16) = C8:5D12 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.4(C2xSD16) | 192,252 |
C6.5(C2xSD16) = C4.5D24 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.5(C2xSD16) | 192,253 |
C6.6(C2xSD16) = C23.39D12 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.6(C2xSD16) | 192,280 |
C6.7(C2xSD16) = D12.31D4 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 48 | | C6.7(C2xSD16) | 192,290 |
C6.8(C2xSD16) = C23.43D12 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.8(C2xSD16) | 192,294 |
C6.9(C2xSD16) = Dic6:14D4 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.9(C2xSD16) | 192,297 |
C6.10(C2xSD16) = C12:SD16 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.10(C2xSD16) | 192,400 |
C6.11(C2xSD16) = D12:3Q8 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.11(C2xSD16) | 192,401 |
C6.12(C2xSD16) = Dic6:8D4 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.12(C2xSD16) | 192,407 |
C6.13(C2xSD16) = Dic6:4Q8 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.13(C2xSD16) | 192,410 |
C6.14(C2xSD16) = C2xC2.Dic12 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.14(C2xSD16) | 192,662 |
C6.15(C2xSD16) = C2xC8:Dic3 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 192 | | C6.15(C2xSD16) | 192,663 |
C6.16(C2xSD16) = C2xC2.D24 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.16(C2xSD16) | 192,671 |
C6.17(C2xSD16) = C24:30D4 | φ: C2xSD16/C2xC8 → C2 ⊆ Aut C6 | 96 | | C6.17(C2xSD16) | 192,673 |
C6.18(C2xSD16) = Dic3:6SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.18(C2xSD16) | 192,317 |
C6.19(C2xSD16) = Dic3.SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.19(C2xSD16) | 192,319 |
C6.20(C2xSD16) = D4:Dic6 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.20(C2xSD16) | 192,320 |
C6.21(C2xSD16) = Dic6:2D4 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.21(C2xSD16) | 192,321 |
C6.22(C2xSD16) = S3xD4:C4 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 48 | | C6.22(C2xSD16) | 192,328 |
C6.23(C2xSD16) = D6:5SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 48 | | C6.23(C2xSD16) | 192,335 |
C6.24(C2xSD16) = D6.SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.24(C2xSD16) | 192,336 |
C6.25(C2xSD16) = D6:SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.25(C2xSD16) | 192,337 |
C6.26(C2xSD16) = Dic3:7SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.26(C2xSD16) | 192,347 |
C6.27(C2xSD16) = Q8:2Dic6 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 192 | | C6.27(C2xSD16) | 192,350 |
C6.28(C2xSD16) = Dic3.1Q16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 192 | | C6.28(C2xSD16) | 192,351 |
C6.29(C2xSD16) = S3xQ8:C4 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.29(C2xSD16) | 192,360 |
C6.30(C2xSD16) = D6.1SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.30(C2xSD16) | 192,364 |
C6.31(C2xSD16) = Q8:3D12 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.31(C2xSD16) | 192,365 |
C6.32(C2xSD16) = D6:2SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.32(C2xSD16) | 192,366 |
C6.33(C2xSD16) = Dic3:SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.33(C2xSD16) | 192,377 |
C6.34(C2xSD16) = Dic3:8SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.34(C2xSD16) | 192,411 |
C6.35(C2xSD16) = Dic6:Q8 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 192 | | C6.35(C2xSD16) | 192,413 |
C6.36(C2xSD16) = C24:5Q8 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 192 | | C6.36(C2xSD16) | 192,414 |
C6.37(C2xSD16) = S3xC4.Q8 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.37(C2xSD16) | 192,418 |
C6.38(C2xSD16) = D6.2SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.38(C2xSD16) | 192,421 |
C6.39(C2xSD16) = D6.4SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.39(C2xSD16) | 192,422 |
C6.40(C2xSD16) = C8:8D12 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.40(C2xSD16) | 192,423 |
C6.41(C2xSD16) = D12:Q8 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.41(C2xSD16) | 192,429 |
C6.42(C2xSD16) = Dic3xSD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.42(C2xSD16) | 192,720 |
C6.43(C2xSD16) = Dic3:3SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.43(C2xSD16) | 192,721 |
C6.44(C2xSD16) = Dic3:5SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.44(C2xSD16) | 192,722 |
C6.45(C2xSD16) = D6:6SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 48 | | C6.45(C2xSD16) | 192,728 |
C6.46(C2xSD16) = D6:8SD16 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.46(C2xSD16) | 192,729 |
C6.47(C2xSD16) = C24:14D4 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.47(C2xSD16) | 192,730 |
C6.48(C2xSD16) = C24:15D4 | φ: C2xSD16/SD16 → C2 ⊆ Aut C6 | 96 | | C6.48(C2xSD16) | 192,734 |
C6.49(C2xSD16) = C2xC6.SD16 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.49(C2xSD16) | 192,528 |
C6.50(C2xSD16) = C4:C4.231D6 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.50(C2xSD16) | 192,530 |
C6.51(C2xSD16) = C12.38SD16 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.51(C2xSD16) | 192,567 |
C6.52(C2xSD16) = C4xD4.S3 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.52(C2xSD16) | 192,576 |
C6.53(C2xSD16) = D4.2D12 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.53(C2xSD16) | 192,578 |
C6.54(C2xSD16) = C4:D4.S3 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.54(C2xSD16) | 192,593 |
C6.55(C2xSD16) = Dic6:17D4 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.55(C2xSD16) | 192,599 |
C6.56(C2xSD16) = C3:C8:23D4 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.56(C2xSD16) | 192,600 |
C6.57(C2xSD16) = C12.16D8 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.57(C2xSD16) | 192,629 |
C6.58(C2xSD16) = Dic6:9D4 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.58(C2xSD16) | 192,634 |
C6.59(C2xSD16) = C12:4SD16 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.59(C2xSD16) | 192,635 |
C6.60(C2xSD16) = C12.SD16 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.60(C2xSD16) | 192,639 |
C6.61(C2xSD16) = C12.Q16 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.61(C2xSD16) | 192,652 |
C6.62(C2xSD16) = Dic6:6Q8 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 192 | | C6.62(C2xSD16) | 192,653 |
C6.63(C2xSD16) = C2xD4:Dic3 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 96 | | C6.63(C2xSD16) | 192,773 |
C6.64(C2xSD16) = (C3xD4).31D4 | φ: C2xSD16/C2xD4 → C2 ⊆ Aut C6 | 48 | | C6.64(C2xSD16) | 192,777 |
C6.65(C2xSD16) = C2xC12.Q8 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.65(C2xSD16) | 192,522 |
C6.66(C2xSD16) = C2xC6.D8 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.66(C2xSD16) | 192,524 |
C6.67(C2xSD16) = C4:C4.228D6 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.67(C2xSD16) | 192,527 |
C6.68(C2xSD16) = Q8:4Dic6 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.68(C2xSD16) | 192,579 |
C6.69(C2xSD16) = C4xQ8:2S3 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.69(C2xSD16) | 192,584 |
C6.70(C2xSD16) = Q8:2D12 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.70(C2xSD16) | 192,586 |
C6.71(C2xSD16) = (C2xQ8).49D6 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.71(C2xSD16) | 192,602 |
C6.72(C2xSD16) = D12.36D4 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 48 | | C6.72(C2xSD16) | 192,605 |
C6.73(C2xSD16) = C3:C8:24D4 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.73(C2xSD16) | 192,607 |
C6.74(C2xSD16) = C12.9Q16 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.74(C2xSD16) | 192,638 |
C6.75(C2xSD16) = C12:5SD16 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.75(C2xSD16) | 192,642 |
C6.76(C2xSD16) = D12:5Q8 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.76(C2xSD16) | 192,643 |
C6.77(C2xSD16) = C12:6SD16 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.77(C2xSD16) | 192,644 |
C6.78(C2xSD16) = C12.D8 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.78(C2xSD16) | 192,647 |
C6.79(C2xSD16) = C2xQ8:2Dic3 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 192 | | C6.79(C2xSD16) | 192,783 |
C6.80(C2xSD16) = (C3xQ8):13D4 | φ: C2xSD16/C2xQ8 → C2 ⊆ Aut C6 | 96 | | C6.80(C2xSD16) | 192,786 |
C6.81(C2xSD16) = C6xD4:C4 | central extension (φ=1) | 96 | | C6.81(C2xSD16) | 192,847 |
C6.82(C2xSD16) = C6xQ8:C4 | central extension (φ=1) | 192 | | C6.82(C2xSD16) | 192,848 |
C6.83(C2xSD16) = C6xC4.Q8 | central extension (φ=1) | 192 | | C6.83(C2xSD16) | 192,858 |
C6.84(C2xSD16) = C12xSD16 | central extension (φ=1) | 96 | | C6.84(C2xSD16) | 192,871 |
C6.85(C2xSD16) = C3xQ8:D4 | central extension (φ=1) | 96 | | C6.85(C2xSD16) | 192,881 |
C6.86(C2xSD16) = C3xC22:SD16 | central extension (φ=1) | 48 | | C6.86(C2xSD16) | 192,883 |
C6.87(C2xSD16) = C3xC4:SD16 | central extension (φ=1) | 96 | | C6.87(C2xSD16) | 192,893 |
C6.88(C2xSD16) = C3xD4.D4 | central extension (φ=1) | 96 | | C6.88(C2xSD16) | 192,894 |
C6.89(C2xSD16) = C3xC8:8D4 | central extension (φ=1) | 96 | | C6.89(C2xSD16) | 192,898 |
C6.90(C2xSD16) = C3xQ8:Q8 | central extension (φ=1) | 192 | | C6.90(C2xSD16) | 192,908 |
C6.91(C2xSD16) = C3xD4:2Q8 | central extension (φ=1) | 96 | | C6.91(C2xSD16) | 192,909 |
C6.92(C2xSD16) = C3xC23.46D4 | central extension (φ=1) | 96 | | C6.92(C2xSD16) | 192,914 |
C6.93(C2xSD16) = C3xC23.47D4 | central extension (φ=1) | 96 | | C6.93(C2xSD16) | 192,916 |
C6.94(C2xSD16) = C3xC4.4D8 | central extension (φ=1) | 96 | | C6.94(C2xSD16) | 192,919 |
C6.95(C2xSD16) = C3xC4.SD16 | central extension (φ=1) | 192 | | C6.95(C2xSD16) | 192,920 |
C6.96(C2xSD16) = C3xC8:5D4 | central extension (φ=1) | 96 | | C6.96(C2xSD16) | 192,925 |
C6.97(C2xSD16) = C3xC8:3Q8 | central extension (φ=1) | 192 | | C6.97(C2xSD16) | 192,931 |