Copied to
clipboard

G = Dic3:6SD16order 192 = 26·3

1st semidirect product of Dic3 and SD16 acting through Inn(Dic3)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic3:6SD16, C3:2(C4xSD16), D4.S3:2C4, D4.2(C4xS3), C6.32(C4xD4), C4:C4.130D6, Dic6:2(C2xC4), (C2xC8).198D6, C2.1(S3xSD16), (C8xDic3):18C2, D4:C4.9S3, (C2xD4).125D6, C6.20(C4oD8), C12.3(C22xC4), C12.Q8:1C2, (D4xDic3).2C2, C6.18(C2xSD16), C22.67(S3xD4), Dic6:C4:2C2, C2.1(D8:3S3), C2.Dic12:20C2, (C6xD4).19C22, C12.144(C4oD4), C4.45(D4:2S3), (C2xC12).198C23, (C2xC24).220C22, (C2xDic3).200D4, C4:Dic3.58C22, (C2xDic6).50C22, C2.16(Dic3:4D4), (C4xDic3).221C22, C4.3(S3xC2xC4), C3:C8:12(C2xC4), (C3xD4).2(C2xC4), (C2xC6).211(C2xD4), (C3xC4:C4).3C22, (C2xD4.S3).2C2, (C2xC3:C8).208C22, (C3xD4:C4).11C2, (C2xC4).305(C22xS3), SmallGroup(192,317)

Series: Derived Chief Lower central Upper central

C1C12 — Dic3:6SD16
C1C3C6C12C2xC12C4xDic3D4xDic3 — Dic3:6SD16
C3C6C12 — Dic3:6SD16
C1C22C2xC4D4:C4

Generators and relations for Dic3:6SD16
 G = < a,b,c,d | a6=c8=d2=1, b2=a3, bab-1=cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c3 >

Subgroups: 312 in 122 conjugacy classes, 51 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, Dic3, Dic3, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, SD16, C22xC4, C2xD4, C2xQ8, C3:C8, C24, Dic6, Dic6, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C22xC6, C4xC8, D4:C4, Q8:C4, C4.Q8, C4xD4, C4xQ8, C2xSD16, C2xC3:C8, C4xDic3, C4xDic3, Dic3:C4, C4:Dic3, D4.S3, C6.D4, C3xC4:C4, C2xC24, C2xDic6, C22xDic3, C6xD4, C4xSD16, C12.Q8, C8xDic3, C2.Dic12, C3xD4:C4, Dic6:C4, C2xD4.S3, D4xDic3, Dic3:6SD16
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, SD16, C22xC4, C2xD4, C4oD4, C4xS3, C22xS3, C4xD4, C2xSD16, C4oD8, S3xC2xC4, S3xD4, D4:2S3, C4xSD16, Dic3:4D4, D8:3S3, S3xSD16, Dic3:6SD16

Smallest permutation representation of Dic3:6SD16
On 96 points
Generators in S96
(1 88 51 16 41 78)(2 79 42 9 52 81)(3 82 53 10 43 80)(4 73 44 11 54 83)(5 84 55 12 45 74)(6 75 46 13 56 85)(7 86 49 14 47 76)(8 77 48 15 50 87)(17 89 35 59 32 71)(18 72 25 60 36 90)(19 91 37 61 26 65)(20 66 27 62 38 92)(21 93 39 63 28 67)(22 68 29 64 40 94)(23 95 33 57 30 69)(24 70 31 58 34 96)
(1 64 16 22)(2 57 9 23)(3 58 10 24)(4 59 11 17)(5 60 12 18)(6 61 13 19)(7 62 14 20)(8 63 15 21)(25 45 90 84)(26 46 91 85)(27 47 92 86)(28 48 93 87)(29 41 94 88)(30 42 95 81)(31 43 96 82)(32 44 89 83)(33 52 69 79)(34 53 70 80)(35 54 71 73)(36 55 72 74)(37 56 65 75)(38 49 66 76)(39 50 67 77)(40 51 68 78)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(33 35)(34 38)(37 39)(42 44)(43 47)(46 48)(49 53)(50 56)(52 54)(57 59)(58 62)(61 63)(65 67)(66 70)(69 71)(73 79)(75 77)(76 80)(81 83)(82 86)(85 87)(89 95)(91 93)(92 96)

G:=sub<Sym(96)| (1,88,51,16,41,78)(2,79,42,9,52,81)(3,82,53,10,43,80)(4,73,44,11,54,83)(5,84,55,12,45,74)(6,75,46,13,56,85)(7,86,49,14,47,76)(8,77,48,15,50,87)(17,89,35,59,32,71)(18,72,25,60,36,90)(19,91,37,61,26,65)(20,66,27,62,38,92)(21,93,39,63,28,67)(22,68,29,64,40,94)(23,95,33,57,30,69)(24,70,31,58,34,96), (1,64,16,22)(2,57,9,23)(3,58,10,24)(4,59,11,17)(5,60,12,18)(6,61,13,19)(7,62,14,20)(8,63,15,21)(25,45,90,84)(26,46,91,85)(27,47,92,86)(28,48,93,87)(29,41,94,88)(30,42,95,81)(31,43,96,82)(32,44,89,83)(33,52,69,79)(34,53,70,80)(35,54,71,73)(36,55,72,74)(37,56,65,75)(38,49,66,76)(39,50,67,77)(40,51,68,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,59)(58,62)(61,63)(65,67)(66,70)(69,71)(73,79)(75,77)(76,80)(81,83)(82,86)(85,87)(89,95)(91,93)(92,96)>;

G:=Group( (1,88,51,16,41,78)(2,79,42,9,52,81)(3,82,53,10,43,80)(4,73,44,11,54,83)(5,84,55,12,45,74)(6,75,46,13,56,85)(7,86,49,14,47,76)(8,77,48,15,50,87)(17,89,35,59,32,71)(18,72,25,60,36,90)(19,91,37,61,26,65)(20,66,27,62,38,92)(21,93,39,63,28,67)(22,68,29,64,40,94)(23,95,33,57,30,69)(24,70,31,58,34,96), (1,64,16,22)(2,57,9,23)(3,58,10,24)(4,59,11,17)(5,60,12,18)(6,61,13,19)(7,62,14,20)(8,63,15,21)(25,45,90,84)(26,46,91,85)(27,47,92,86)(28,48,93,87)(29,41,94,88)(30,42,95,81)(31,43,96,82)(32,44,89,83)(33,52,69,79)(34,53,70,80)(35,54,71,73)(36,55,72,74)(37,56,65,75)(38,49,66,76)(39,50,67,77)(40,51,68,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,59)(58,62)(61,63)(65,67)(66,70)(69,71)(73,79)(75,77)(76,80)(81,83)(82,86)(85,87)(89,95)(91,93)(92,96) );

G=PermutationGroup([[(1,88,51,16,41,78),(2,79,42,9,52,81),(3,82,53,10,43,80),(4,73,44,11,54,83),(5,84,55,12,45,74),(6,75,46,13,56,85),(7,86,49,14,47,76),(8,77,48,15,50,87),(17,89,35,59,32,71),(18,72,25,60,36,90),(19,91,37,61,26,65),(20,66,27,62,38,92),(21,93,39,63,28,67),(22,68,29,64,40,94),(23,95,33,57,30,69),(24,70,31,58,34,96)], [(1,64,16,22),(2,57,9,23),(3,58,10,24),(4,59,11,17),(5,60,12,18),(6,61,13,19),(7,62,14,20),(8,63,15,21),(25,45,90,84),(26,46,91,85),(27,47,92,86),(28,48,93,87),(29,41,94,88),(30,42,95,81),(31,43,96,82),(32,44,89,83),(33,52,69,79),(34,53,70,80),(35,54,71,73),(36,55,72,74),(37,56,65,75),(38,49,66,76),(39,50,67,77),(40,51,68,78)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(33,35),(34,38),(37,39),(42,44),(43,47),(46,48),(49,53),(50,56),(52,54),(57,59),(58,62),(61,63),(65,67),(66,70),(69,71),(73,79),(75,77),(76,80),(81,83),(82,86),(85,87),(89,95),(91,93),(92,96)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D24A24B24C24D
order12222234444444444444466666888888881212121224242424
size1111442223333446612121212222882222666644884444

42 irreducible representations

dim1111111112222222224444
type+++++++++++++-+-
imageC1C2C2C2C2C2C2C2C4S3D4D6D6D6SD16C4oD4C4xS3C4oD8D4:2S3S3xD4D8:3S3S3xSD16
kernelDic3:6SD16C12.Q8C8xDic3C2.Dic12C3xD4:C4Dic6:C4C2xD4.S3D4xDic3D4.S3D4:C4C2xDic3C4:C4C2xC8C2xD4Dic3C12D4C6C4C22C2C2
# reps1111111181211142441122

Matrix representation of Dic3:6SD16 in GL4(F73) generated by

17200
1000
00720
00072
,
54500
591900
00270
00027
,
21100
137100
001261
0060
,
1000
0100
0010
00172
G:=sub<GL(4,GF(73))| [1,1,0,0,72,0,0,0,0,0,72,0,0,0,0,72],[54,59,0,0,5,19,0,0,0,0,27,0,0,0,0,27],[2,13,0,0,11,71,0,0,0,0,12,6,0,0,61,0],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,72] >;

Dic3:6SD16 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes_6{\rm SD}_{16}
% in TeX

G:=Group("Dic3:6SD16");
// GroupNames label

G:=SmallGroup(192,317);
// by ID

G=gap.SmallGroup(192,317);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,135,268,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^8=d^2=1,b^2=a^3,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<