Direct product G=NxQ with N=C16 and Q=D6
Semidirect products G=N:Q with N=C16 and Q=D6
Non-split extensions G=N.Q with N=C16 and Q=D6
extension | φ:Q→Aut N | d | ρ | Label | ID |
C16.1D6 = C16.D6 | φ: D6/C3 → C22 ⊆ Aut C16 | 96 | 4- | C16.1D6 | 192,468 |
C16.2D6 = SD32:S3 | φ: D6/C3 → C22 ⊆ Aut C16 | 96 | 4- | C16.2D6 | 192,474 |
C16.3D6 = Q32:S3 | φ: D6/C3 → C22 ⊆ Aut C16 | 96 | 4 | C16.3D6 | 192,477 |
C16.4D6 = C3:D32 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4+ | C16.4D6 | 192,78 |
C16.5D6 = D16.S3 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4- | C16.5D6 | 192,79 |
C16.6D6 = C3:SD64 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4+ | C16.6D6 | 192,80 |
C16.7D6 = C3:Q64 | φ: D6/S3 → C2 ⊆ Aut C16 | 192 | 4- | C16.7D6 | 192,81 |
C16.8D6 = D16:3S3 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4- | C16.8D6 | 192,471 |
C16.9D6 = S3xQ32 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4- | C16.9D6 | 192,476 |
C16.10D6 = D48:5C2 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4+ | C16.10D6 | 192,478 |
C16.11D6 = D6.2D8 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4 | C16.11D6 | 192,475 |
C16.12D6 = C16.12D6 | φ: D6/S3 → C2 ⊆ Aut C16 | 96 | 4 | C16.12D6 | 192,466 |
C16.13D6 = D96 | φ: D6/C6 → C2 ⊆ Aut C16 | 96 | 2+ | C16.13D6 | 192,7 |
C16.14D6 = C32:S3 | φ: D6/C6 → C2 ⊆ Aut C16 | 96 | 2 | C16.14D6 | 192,8 |
C16.15D6 = Dic48 | φ: D6/C6 → C2 ⊆ Aut C16 | 192 | 2- | C16.15D6 | 192,9 |
C16.16D6 = D48:7C2 | φ: D6/C6 → C2 ⊆ Aut C16 | 96 | 2 | C16.16D6 | 192,463 |
C16.17D6 = C2xDic24 | φ: D6/C6 → C2 ⊆ Aut C16 | 192 | | C16.17D6 | 192,464 |
C16.18D6 = D12.4C8 | φ: D6/C6 → C2 ⊆ Aut C16 | 96 | 2 | C16.18D6 | 192,460 |
C16.19D6 = S3xC32 | central extension (φ=1) | 96 | 2 | C16.19D6 | 192,5 |
C16.20D6 = C96:C2 | central extension (φ=1) | 96 | 2 | C16.20D6 | 192,6 |
C16.21D6 = C2xC3:C32 | central extension (φ=1) | 192 | | C16.21D6 | 192,57 |
C16.22D6 = C3:M6(2) | central extension (φ=1) | 96 | 2 | C16.22D6 | 192,58 |
x
:
Z
F
o
wr
Q
<