Copied to
clipboard

G = C2xD48order 192 = 26·3

Direct product of C2 and D48

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD48, C16:7D6, C6:1D16, C4.6D24, C48:8C22, C24.60D4, C8.10D12, C12.31D8, D24:7C22, C24.55C23, C22.12D24, C3:1(C2xD16), (C2xC16):5S3, (C2xC48):9C2, C6.9(C2xD8), (C2xD24):8C2, (C2xC6).18D8, (C2xC8).303D6, C4.36(C2xD12), C2.11(C2xD24), (C2xC4).83D12, (C2xC12).380D4, C12.279(C2xD4), C8.45(C22xS3), (C2xC24).376C22, SmallGroup(192,461)

Series: Derived Chief Lower central Upper central

C1C24 — C2xD48
C1C3C6C12C24D24C2xD24 — C2xD48
C3C6C12C24 — C2xD48
C1C22C2xC4C2xC8C2xC16

Generators and relations for C2xD48
 G = < a,b,c | a2=b48=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 520 in 98 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2xC4, D4, C23, C12, D6, C2xC6, C16, C2xC8, D8, C2xD4, C24, D12, C2xC12, C22xS3, C2xC16, D16, C2xD8, C48, D24, D24, C2xC24, C2xD12, C2xD16, D48, C2xC48, C2xD24, C2xD48
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, D12, C22xS3, D16, C2xD8, D24, C2xD12, C2xD16, D48, C2xD24, C2xD48

Smallest permutation representation of C2xD48
On 96 points
Generators in S96
(1 76)(2 77)(3 78)(4 79)(5 80)(6 81)(7 82)(8 83)(9 84)(10 85)(11 86)(12 87)(13 88)(14 89)(15 90)(16 91)(17 92)(18 93)(19 94)(20 95)(21 96)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 75)(2 74)(3 73)(4 72)(5 71)(6 70)(7 69)(8 68)(9 67)(10 66)(11 65)(12 64)(13 63)(14 62)(15 61)(16 60)(17 59)(18 58)(19 57)(20 56)(21 55)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 96)(29 95)(30 94)(31 93)(32 92)(33 91)(34 90)(35 89)(36 88)(37 87)(38 86)(39 85)(40 84)(41 83)(42 82)(43 81)(44 80)(45 79)(46 78)(47 77)(48 76)

G:=sub<Sym(96)| (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,75)(2,74)(3,73)(4,72)(5,71)(6,70)(7,69)(8,68)(9,67)(10,66)(11,65)(12,64)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,96)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76)>;

G:=Group( (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,75)(2,74)(3,73)(4,72)(5,71)(6,70)(7,69)(8,68)(9,67)(10,66)(11,65)(12,64)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,96)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76) );

G=PermutationGroup([[(1,76),(2,77),(3,78),(4,79),(5,80),(6,81),(7,82),(8,83),(9,84),(10,85),(11,86),(12,87),(13,88),(14,89),(15,90),(16,91),(17,92),(18,93),(19,94),(20,95),(21,96),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,75),(2,74),(3,73),(4,72),(5,71),(6,70),(7,69),(8,68),(9,67),(10,66),(11,65),(12,64),(13,63),(14,62),(15,61),(16,60),(17,59),(18,58),(19,57),(20,56),(21,55),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,96),(29,95),(30,94),(31,93),(32,92),(33,91),(34,90),(35,89),(36,88),(37,87),(38,86),(39,85),(40,84),(41,83),(42,82),(43,81),(44,80),(45,79),(46,78),(47,77),(48,76)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C8A8B8C8D12A12B12C12D16A···16H24A···24H48A···48P
order1222222234466688881212121216···1624···2448···48
size111124242424222222222222222···22···22···2

54 irreducible representations

dim11112222222222222
type+++++++++++++++++
imageC1C2C2C2S3D4D4D6D6D8D8D12D12D16D24D24D48
kernelC2xD48D48C2xC48C2xD24C2xC16C24C2xC12C16C2xC8C12C2xC6C8C2xC4C6C4C22C2
# reps141211121222284416

Matrix representation of C2xD48 in GL3(F97) generated by

9600
010
001
,
9600
01965
03284
,
9600
03284
01965
G:=sub<GL(3,GF(97))| [96,0,0,0,1,0,0,0,1],[96,0,0,0,19,32,0,65,84],[96,0,0,0,32,19,0,84,65] >;

C2xD48 in GAP, Magma, Sage, TeX

C_2\times D_{48}
% in TeX

G:=Group("C2xD48");
// GroupNames label

G:=SmallGroup(192,461);
// by ID

G=gap.SmallGroup(192,461);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,142,675,192,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^2=b^48=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<