extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xDic3).1(C2xC4) = C23:C4:5S3 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).1(C2xC4) | 192,299 |
(C2xDic3).2(C2xC4) = M4(2).19D6 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).2(C2xC4) | 192,304 |
(C2xDic3).3(C2xC4) = S3xC4.10D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).3(C2xC4) | 192,309 |
(C2xDic3).4(C2xC4) = (C2xD12):13C4 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).4(C2xC4) | 192,565 |
(C2xDic3).5(C2xC4) = M4(2).31D6 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).5(C2xC4) | 192,691 |
(C2xDic3).6(C2xC4) = C2xC12.47D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xDic3 | 96 | | (C2xDic3).6(C2xC4) | 192,695 |
(C2xDic3).7(C2xC4) = C6.(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).7(C2xC4) | 192,211 |
(C2xDic3).8(C2xC4) = Dic3:C4:C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).8(C2xC4) | 192,214 |
(C2xDic3).9(C2xC4) = D6:C4:5C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).9(C2xC4) | 192,228 |
(C2xDic3).10(C2xC4) = C24:12Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).10(C2xC4) | 192,238 |
(C2xDic3).11(C2xC4) = C8:6D12 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).11(C2xC4) | 192,247 |
(C2xDic3).12(C2xC4) = C42.243D6 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).12(C2xC4) | 192,249 |
(C2xDic3).13(C2xC4) = C24:Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).13(C2xC4) | 192,260 |
(C2xDic3).14(C2xC4) = C8:9D12 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).14(C2xC4) | 192,265 |
(C2xDic3).15(C2xC4) = C42.185D6 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).15(C2xC4) | 192,268 |
(C2xDic3).16(C2xC4) = C24:C4:C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).16(C2xC4) | 192,279 |
(C2xDic3).17(C2xC4) = D6:2M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).17(C2xC4) | 192,287 |
(C2xDic3).18(C2xC4) = C3:C8:26D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).18(C2xC4) | 192,289 |
(C2xDic3).19(C2xC4) = S3xC4.D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 24 | 8+ | (C2xDic3).19(C2xC4) | 192,303 |
(C2xDic3).20(C2xC4) = C42.27D6 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).20(C2xC4) | 192,387 |
(C2xDic3).21(C2xC4) = C42.198D6 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).21(C2xC4) | 192,390 |
(C2xDic3).22(C2xC4) = D6:3M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).22(C2xC4) | 192,395 |
(C2xDic3).23(C2xC4) = C12:2M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).23(C2xC4) | 192,397 |
(C2xDic3).24(C2xC4) = C12:4(C4:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).24(C2xC4) | 192,487 |
(C2xDic3).25(C2xC4) = (C2xDic6):7C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).25(C2xC4) | 192,488 |
(C2xDic3).26(C2xC4) = (C2xC42).6S3 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).26(C2xC4) | 192,492 |
(C2xDic3).27(C2xC4) = (C2xC42):3S3 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).27(C2xC4) | 192,499 |
(C2xDic3).28(C2xC4) = C12:(C4:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).28(C2xC4) | 192,531 |
(C2xDic3).29(C2xC4) = C4.(D6:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).29(C2xC4) | 192,532 |
(C2xDic3).30(C2xC4) = Dic3:C8:C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).30(C2xC4) | 192,661 |
(C2xDic3).31(C2xC4) = (C22xC8):7S3 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).31(C2xC4) | 192,669 |
(C2xDic3).32(C2xC4) = C24:33D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).32(C2xC4) | 192,670 |
(C2xDic3).33(C2xC4) = C12.88(C2xQ8) | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).33(C2xC4) | 192,678 |
(C2xDic3).34(C2xC4) = C24:D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).34(C2xC4) | 192,686 |
(C2xDic3).35(C2xC4) = D6:C8:40C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).35(C2xC4) | 192,688 |
(C2xDic3).36(C2xC4) = C42.87D6 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).36(C2xC4) | 192,1075 |
(C2xDic3).37(C2xC4) = M4(2):26D6 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).37(C2xC4) | 192,1304 |
(C2xDic3).38(C2xC4) = M4(2):28D6 | φ: C2xC4/C2 → C22 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).38(C2xC4) | 192,1309 |
(C2xDic3).39(C2xC4) = (C2xC12):Q8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).39(C2xC4) | 192,205 |
(C2xDic3).40(C2xC4) = C6.(C4xQ8) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).40(C2xC4) | 192,206 |
(C2xDic3).41(C2xC4) = Dic3:C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).41(C2xC4) | 192,208 |
(C2xDic3).42(C2xC4) = C2.(C4xD12) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).42(C2xC4) | 192,212 |
(C2xDic3).43(C2xC4) = C2.(C4xDic6) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).43(C2xC4) | 192,213 |
(C2xDic3).44(C2xC4) = D6:C4:3C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).44(C2xC4) | 192,229 |
(C2xDic3).45(C2xC4) = C8xDic6 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).45(C2xC4) | 192,237 |
(C2xDic3).46(C2xC4) = C8xD12 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).46(C2xC4) | 192,245 |
(C2xDic3).47(C2xC4) = D6.C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).47(C2xC4) | 192,248 |
(C2xDic3).48(C2xC4) = D6.4C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).48(C2xC4) | 192,267 |
(C2xDic3).49(C2xC4) = C3:D4:C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).49(C2xC4) | 192,284 |
(C2xDic3).50(C2xC4) = D6:C8:C2 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).50(C2xC4) | 192,286 |
(C2xDic3).51(C2xC4) = Dic3:M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).51(C2xC4) | 192,288 |
(C2xDic3).52(C2xC4) = Dic6:C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).52(C2xC4) | 192,389 |
(C2xDic3).53(C2xC4) = D12:C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).53(C2xC4) | 192,393 |
(C2xDic3).54(C2xC4) = C42.30D6 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).54(C2xC4) | 192,398 |
(C2xDic3).55(C2xC4) = C42.31D6 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).55(C2xC4) | 192,399 |
(C2xDic3).56(C2xC4) = C4xDic3:C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).56(C2xC4) | 192,490 |
(C2xDic3).57(C2xC4) = C4xC4:Dic3 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).57(C2xC4) | 192,493 |
(C2xDic3).58(C2xC4) = C24.14D6 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).58(C2xC4) | 192,503 |
(C2xDic3).59(C2xC4) = C24.15D6 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).59(C2xC4) | 192,504 |
(C2xDic3).60(C2xC4) = C24.24D6 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).60(C2xC4) | 192,516 |
(C2xDic3).61(C2xC4) = Dic3xC4:C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).61(C2xC4) | 192,533 |
(C2xDic3).62(C2xC4) = Dic3:(C4:C4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).62(C2xC4) | 192,535 |
(C2xDic3).63(C2xC4) = C6.67(C4xD4) | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).63(C2xC4) | 192,537 |
(C2xDic3).64(C2xC4) = D6:C4:7C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).64(C2xC4) | 192,549 |
(C2xDic3).65(C2xC4) = C12.12C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).65(C2xC4) | 192,660 |
(C2xDic3).66(C2xC4) = C8xC3:D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).66(C2xC4) | 192,668 |
(C2xDic3).67(C2xC4) = C12.7C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).67(C2xC4) | 192,681 |
(C2xDic3).68(C2xC4) = C24:21D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).68(C2xC4) | 192,687 |
(C2xDic3).69(C2xC4) = C2xC4xDic6 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).69(C2xC4) | 192,1026 |
(C2xDic3).70(C2xC4) = C2xDic6:C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).70(C2xC4) | 192,1055 |
(C2xDic3).71(C2xC4) = C2xC8oD12 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).71(C2xC4) | 192,1297 |
(C2xDic3).72(C2xC4) = C2xD12.C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).72(C2xC4) | 192,1303 |
(C2xDic3).73(C2xC4) = S3xC8oD4 | φ: C2xC4/C4 → C2 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).73(C2xC4) | 192,1308 |
(C2xDic3).74(C2xC4) = Dic3.5C42 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).74(C2xC4) | 192,207 |
(C2xDic3).75(C2xC4) = C3:(C42:8C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).75(C2xC4) | 192,209 |
(C2xDic3).76(C2xC4) = C3:(C42:5C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).76(C2xC4) | 192,210 |
(C2xDic3).77(C2xC4) = C22.58(S3xD4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).77(C2xC4) | 192,223 |
(C2xDic3).78(C2xC4) = D6:(C4:C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).78(C2xC4) | 192,226 |
(C2xDic3).79(C2xC4) = C42.282D6 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).79(C2xC4) | 192,244 |
(C2xDic3).80(C2xC4) = C4xC8:S3 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).80(C2xC4) | 192,246 |
(C2xDic3).81(C2xC4) = C42.182D6 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).81(C2xC4) | 192,264 |
(C2xDic3).82(C2xC4) = Dic3:5M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).82(C2xC4) | 192,266 |
(C2xDic3).83(C2xC4) = Dic3.M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).83(C2xC4) | 192,278 |
(C2xDic3).84(C2xC4) = S3xC22:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).84(C2xC4) | 192,283 |
(C2xDic3).85(C2xC4) = D6:M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).85(C2xC4) | 192,285 |
(C2xDic3).86(C2xC4) = M4(2).21D6 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 48 | 8+ | (C2xDic3).86(C2xC4) | 192,310 |
(C2xDic3).87(C2xC4) = S3xC4:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).87(C2xC4) | 192,391 |
(C2xDic3).88(C2xC4) = C42.200D6 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).88(C2xC4) | 192,392 |
(C2xDic3).89(C2xC4) = C42.202D6 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).89(C2xC4) | 192,394 |
(C2xDic3).90(C2xC4) = C12:M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).90(C2xC4) | 192,396 |
(C2xDic3).91(C2xC4) = C42:6Dic3 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).91(C2xC4) | 192,491 |
(C2xDic3).92(C2xC4) = C24.55D6 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).92(C2xC4) | 192,501 |
(C2xDic3).93(C2xC4) = C24.56D6 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).93(C2xC4) | 192,502 |
(C2xDic3).94(C2xC4) = (C4xDic3):8C4 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).94(C2xC4) | 192,534 |
(C2xDic3).95(C2xC4) = (C4xDic3):9C4 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).95(C2xC4) | 192,536 |
(C2xDic3).96(C2xC4) = C4:(D6:C4) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).96(C2xC4) | 192,546 |
(C2xDic3).97(C2xC4) = C2xDic3:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).97(C2xC4) | 192,658 |
(C2xDic3).98(C2xC4) = C2xC24:C4 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).98(C2xC4) | 192,659 |
(C2xDic3).99(C2xC4) = C2xD6:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).99(C2xC4) | 192,667 |
(C2xDic3).100(C2xC4) = Dic3xM4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).100(C2xC4) | 192,676 |
(C2xDic3).101(C2xC4) = Dic3:4M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).101(C2xC4) | 192,677 |
(C2xDic3).102(C2xC4) = D6:6M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).102(C2xC4) | 192,685 |
(C2xDic3).103(C2xC4) = C2xC42:2S3 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).103(C2xC4) | 192,1031 |
(C2xDic3).104(C2xC4) = C22xC8:S3 | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).104(C2xC4) | 192,1296 |
(C2xDic3).105(C2xC4) = C2xS3xM4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).105(C2xC4) | 192,1302 |
(C2xDic3).106(C2xC4) = S3xC4xC8 | φ: trivial image | 96 | | (C2xDic3).106(C2xC4) | 192,243 |
(C2xDic3).107(C2xC4) = S3xC8:C4 | φ: trivial image | 96 | | (C2xDic3).107(C2xC4) | 192,263 |
(C2xDic3).108(C2xC4) = Dic3.5M4(2) | φ: trivial image | 96 | | (C2xDic3).108(C2xC4) | 192,277 |
(C2xDic3).109(C2xC4) = Dic3xC42 | φ: trivial image | 192 | | (C2xDic3).109(C2xC4) | 192,489 |
(C2xDic3).110(C2xC4) = Dic3xC2xC8 | φ: trivial image | 192 | | (C2xDic3).110(C2xC4) | 192,657 |
(C2xDic3).111(C2xC4) = C2xC4:C4:7S3 | φ: trivial image | 96 | | (C2xDic3).111(C2xC4) | 192,1061 |
(C2xDic3).112(C2xC4) = S3xC22xC8 | φ: trivial image | 96 | | (C2xDic3).112(C2xC4) | 192,1295 |