Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C2xC4

Direct product G=NxQ with N=C2xDic3 and Q=C2xC4
dρLabelID
Dic3xC22xC4192Dic3xC2^2xC4192,1341

Semidirect products G=N:Q with N=C2xDic3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xDic3):1(C2xC4) = S3xC23:C4φ: C2xC4/C2C4 ⊆ Out C2xDic3248+(C2xDic3):1(C2xC4)192,302
(C2xDic3):2(C2xC4) = C2xC23.6D6φ: C2xC4/C2C4 ⊆ Out C2xDic348(C2xDic3):2(C2xC4)192,513
(C2xDic3):3(C2xC4) = D6:C4:C4φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):3(C2xC4)192,227
(C2xDic3):4(C2xC4) = C24.57D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):4(C2xC4)192,505
(C2xDic3):5(C2xC4) = C24.23D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):5(C2xC4)192,515
(C2xDic3):6(C2xC4) = C24.60D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):6(C2xC4)192,517
(C2xDic3):7(C2xC4) = D6:C4:6C4φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):7(C2xC4)192,548
(C2xDic3):8(C2xC4) = C24.73D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):8(C2xC4)192,769
(C2xDic3):9(C2xC4) = C24.76D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):9(C2xC4)192,772
(C2xDic3):10(C2xC4) = C24.35D6φ: C2xC4/C2C22 ⊆ Out C2xDic348(C2xDic3):10(C2xC4)192,1045
(C2xDic3):11(C2xC4) = C42.108D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3):11(C2xC4)192,1105
(C2xDic3):12(C2xC4) = D6:C42φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3):12(C2xC4)192,225
(C2xDic3):13(C2xC4) = C4xD6:C4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3):13(C2xC4)192,497
(C2xDic3):14(C2xC4) = Dic3xC22:C4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3):14(C2xC4)192,500
(C2xDic3):15(C2xC4) = C4xC6.D4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3):15(C2xC4)192,768
(C2xDic3):16(C2xC4) = C2xDic3:4D4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3):16(C2xC4)192,1044
(C2xDic3):17(C2xC4) = C4xD4:2S3φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3):17(C2xC4)192,1095
(C2xDic3):18(C2xC4) = C2xC4xC3:D4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3):18(C2xC4)192,1347
(C2xDic3):19(C2xC4) = S3xC2.C42φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3):19(C2xC4)192,222
(C2xDic3):20(C2xC4) = C2xC6.C42φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3):20(C2xC4)192,767
(C2xDic3):21(C2xC4) = C2xC23.16D6φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3):21(C2xC4)192,1039
(C2xDic3):22(C2xC4) = C2xS3xC4:C4φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3):22(C2xC4)192,1060
(C2xDic3):23(C2xC4) = S3xC42:C2φ: C2xC4/C22C2 ⊆ Out C2xDic348(C2xDic3):23(C2xC4)192,1079
(C2xDic3):24(C2xC4) = C22xDic3:C4φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3):24(C2xC4)192,1342
(C2xDic3):25(C2xC4) = S3xC2xC42φ: trivial image96(C2xDic3):25(C2xC4)192,1030

Non-split extensions G=N.Q with N=C2xDic3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xDic3).1(C2xC4) = C23:C4:5S3φ: C2xC4/C2C4 ⊆ Out C2xDic3488-(C2xDic3).1(C2xC4)192,299
(C2xDic3).2(C2xC4) = M4(2).19D6φ: C2xC4/C2C4 ⊆ Out C2xDic3488-(C2xDic3).2(C2xC4)192,304
(C2xDic3).3(C2xC4) = S3xC4.10D4φ: C2xC4/C2C4 ⊆ Out C2xDic3488-(C2xDic3).3(C2xC4)192,309
(C2xDic3).4(C2xC4) = (C2xD12):13C4φ: C2xC4/C2C4 ⊆ Out C2xDic3484(C2xDic3).4(C2xC4)192,565
(C2xDic3).5(C2xC4) = M4(2).31D6φ: C2xC4/C2C4 ⊆ Out C2xDic3484(C2xDic3).5(C2xC4)192,691
(C2xDic3).6(C2xC4) = C2xC12.47D4φ: C2xC4/C2C4 ⊆ Out C2xDic396(C2xDic3).6(C2xC4)192,695
(C2xDic3).7(C2xC4) = C6.(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).7(C2xC4)192,211
(C2xDic3).8(C2xC4) = Dic3:C4:C4φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).8(C2xC4)192,214
(C2xDic3).9(C2xC4) = D6:C4:5C4φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).9(C2xC4)192,228
(C2xDic3).10(C2xC4) = C24:12Q8φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).10(C2xC4)192,238
(C2xDic3).11(C2xC4) = C8:6D12φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).11(C2xC4)192,247
(C2xDic3).12(C2xC4) = C42.243D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).12(C2xC4)192,249
(C2xDic3).13(C2xC4) = C24:Q8φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).13(C2xC4)192,260
(C2xDic3).14(C2xC4) = C8:9D12φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).14(C2xC4)192,265
(C2xDic3).15(C2xC4) = C42.185D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).15(C2xC4)192,268
(C2xDic3).16(C2xC4) = C24:C4:C2φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).16(C2xC4)192,279
(C2xDic3).17(C2xC4) = D6:2M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).17(C2xC4)192,287
(C2xDic3).18(C2xC4) = C3:C8:26D4φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).18(C2xC4)192,289
(C2xDic3).19(C2xC4) = S3xC4.D4φ: C2xC4/C2C22 ⊆ Out C2xDic3248+(C2xDic3).19(C2xC4)192,303
(C2xDic3).20(C2xC4) = C42.27D6φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).20(C2xC4)192,387
(C2xDic3).21(C2xC4) = C42.198D6φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).21(C2xC4)192,390
(C2xDic3).22(C2xC4) = D6:3M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).22(C2xC4)192,395
(C2xDic3).23(C2xC4) = C12:2M4(2)φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).23(C2xC4)192,397
(C2xDic3).24(C2xC4) = C12:4(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).24(C2xC4)192,487
(C2xDic3).25(C2xC4) = (C2xDic6):7C4φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).25(C2xC4)192,488
(C2xDic3).26(C2xC4) = (C2xC42).6S3φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).26(C2xC4)192,492
(C2xDic3).27(C2xC4) = (C2xC42):3S3φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).27(C2xC4)192,499
(C2xDic3).28(C2xC4) = C12:(C4:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).28(C2xC4)192,531
(C2xDic3).29(C2xC4) = C4.(D6:C4)φ: C2xC4/C2C22 ⊆ Out C2xDic3192(C2xDic3).29(C2xC4)192,532
(C2xDic3).30(C2xC4) = Dic3:C8:C2φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).30(C2xC4)192,661
(C2xDic3).31(C2xC4) = (C22xC8):7S3φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).31(C2xC4)192,669
(C2xDic3).32(C2xC4) = C24:33D4φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).32(C2xC4)192,670
(C2xDic3).33(C2xC4) = C12.88(C2xQ8)φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).33(C2xC4)192,678
(C2xDic3).34(C2xC4) = C24:D4φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).34(C2xC4)192,686
(C2xDic3).35(C2xC4) = D6:C8:40C2φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).35(C2xC4)192,688
(C2xDic3).36(C2xC4) = C42.87D6φ: C2xC4/C2C22 ⊆ Out C2xDic396(C2xDic3).36(C2xC4)192,1075
(C2xDic3).37(C2xC4) = M4(2):26D6φ: C2xC4/C2C22 ⊆ Out C2xDic3484(C2xDic3).37(C2xC4)192,1304
(C2xDic3).38(C2xC4) = M4(2):28D6φ: C2xC4/C2C22 ⊆ Out C2xDic3484(C2xDic3).38(C2xC4)192,1309
(C2xDic3).39(C2xC4) = (C2xC12):Q8φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).39(C2xC4)192,205
(C2xDic3).40(C2xC4) = C6.(C4xQ8)φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).40(C2xC4)192,206
(C2xDic3).41(C2xC4) = Dic3:C42φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).41(C2xC4)192,208
(C2xDic3).42(C2xC4) = C2.(C4xD12)φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).42(C2xC4)192,212
(C2xDic3).43(C2xC4) = C2.(C4xDic6)φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).43(C2xC4)192,213
(C2xDic3).44(C2xC4) = D6:C4:3C4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).44(C2xC4)192,229
(C2xDic3).45(C2xC4) = C8xDic6φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).45(C2xC4)192,237
(C2xDic3).46(C2xC4) = C8xD12φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).46(C2xC4)192,245
(C2xDic3).47(C2xC4) = D6.C42φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).47(C2xC4)192,248
(C2xDic3).48(C2xC4) = D6.4C42φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).48(C2xC4)192,267
(C2xDic3).49(C2xC4) = C3:D4:C8φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).49(C2xC4)192,284
(C2xDic3).50(C2xC4) = D6:C8:C2φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).50(C2xC4)192,286
(C2xDic3).51(C2xC4) = Dic3:M4(2)φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).51(C2xC4)192,288
(C2xDic3).52(C2xC4) = Dic6:C8φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).52(C2xC4)192,389
(C2xDic3).53(C2xC4) = D12:C8φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).53(C2xC4)192,393
(C2xDic3).54(C2xC4) = C42.30D6φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).54(C2xC4)192,398
(C2xDic3).55(C2xC4) = C42.31D6φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).55(C2xC4)192,399
(C2xDic3).56(C2xC4) = C4xDic3:C4φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).56(C2xC4)192,490
(C2xDic3).57(C2xC4) = C4xC4:Dic3φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).57(C2xC4)192,493
(C2xDic3).58(C2xC4) = C24.14D6φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).58(C2xC4)192,503
(C2xDic3).59(C2xC4) = C24.15D6φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).59(C2xC4)192,504
(C2xDic3).60(C2xC4) = C24.24D6φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).60(C2xC4)192,516
(C2xDic3).61(C2xC4) = Dic3xC4:C4φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).61(C2xC4)192,533
(C2xDic3).62(C2xC4) = Dic3:(C4:C4)φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).62(C2xC4)192,535
(C2xDic3).63(C2xC4) = C6.67(C4xD4)φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).63(C2xC4)192,537
(C2xDic3).64(C2xC4) = D6:C4:7C4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).64(C2xC4)192,549
(C2xDic3).65(C2xC4) = C12.12C42φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).65(C2xC4)192,660
(C2xDic3).66(C2xC4) = C8xC3:D4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).66(C2xC4)192,668
(C2xDic3).67(C2xC4) = C12.7C42φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).67(C2xC4)192,681
(C2xDic3).68(C2xC4) = C24:21D4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).68(C2xC4)192,687
(C2xDic3).69(C2xC4) = C2xC4xDic6φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).69(C2xC4)192,1026
(C2xDic3).70(C2xC4) = C2xDic6:C4φ: C2xC4/C4C2 ⊆ Out C2xDic3192(C2xDic3).70(C2xC4)192,1055
(C2xDic3).71(C2xC4) = C2xC8oD12φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).71(C2xC4)192,1297
(C2xDic3).72(C2xC4) = C2xD12.C4φ: C2xC4/C4C2 ⊆ Out C2xDic396(C2xDic3).72(C2xC4)192,1303
(C2xDic3).73(C2xC4) = S3xC8oD4φ: C2xC4/C4C2 ⊆ Out C2xDic3484(C2xDic3).73(C2xC4)192,1308
(C2xDic3).74(C2xC4) = Dic3.5C42φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).74(C2xC4)192,207
(C2xDic3).75(C2xC4) = C3:(C42:8C4)φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).75(C2xC4)192,209
(C2xDic3).76(C2xC4) = C3:(C42:5C4)φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).76(C2xC4)192,210
(C2xDic3).77(C2xC4) = C22.58(S3xD4)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).77(C2xC4)192,223
(C2xDic3).78(C2xC4) = D6:(C4:C4)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).78(C2xC4)192,226
(C2xDic3).79(C2xC4) = C42.282D6φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).79(C2xC4)192,244
(C2xDic3).80(C2xC4) = C4xC8:S3φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).80(C2xC4)192,246
(C2xDic3).81(C2xC4) = C42.182D6φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).81(C2xC4)192,264
(C2xDic3).82(C2xC4) = Dic3:5M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).82(C2xC4)192,266
(C2xDic3).83(C2xC4) = Dic3.M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).83(C2xC4)192,278
(C2xDic3).84(C2xC4) = S3xC22:C8φ: C2xC4/C22C2 ⊆ Out C2xDic348(C2xDic3).84(C2xC4)192,283
(C2xDic3).85(C2xC4) = D6:M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic348(C2xDic3).85(C2xC4)192,285
(C2xDic3).86(C2xC4) = M4(2).21D6φ: C2xC4/C22C2 ⊆ Out C2xDic3488+(C2xDic3).86(C2xC4)192,310
(C2xDic3).87(C2xC4) = S3xC4:C8φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).87(C2xC4)192,391
(C2xDic3).88(C2xC4) = C42.200D6φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).88(C2xC4)192,392
(C2xDic3).89(C2xC4) = C42.202D6φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).89(C2xC4)192,394
(C2xDic3).90(C2xC4) = C12:M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).90(C2xC4)192,396
(C2xDic3).91(C2xC4) = C42:6Dic3φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).91(C2xC4)192,491
(C2xDic3).92(C2xC4) = C24.55D6φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).92(C2xC4)192,501
(C2xDic3).93(C2xC4) = C24.56D6φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).93(C2xC4)192,502
(C2xDic3).94(C2xC4) = (C4xDic3):8C4φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).94(C2xC4)192,534
(C2xDic3).95(C2xC4) = (C4xDic3):9C4φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).95(C2xC4)192,536
(C2xDic3).96(C2xC4) = C4:(D6:C4)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).96(C2xC4)192,546
(C2xDic3).97(C2xC4) = C2xDic3:C8φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).97(C2xC4)192,658
(C2xDic3).98(C2xC4) = C2xC24:C4φ: C2xC4/C22C2 ⊆ Out C2xDic3192(C2xDic3).98(C2xC4)192,659
(C2xDic3).99(C2xC4) = C2xD6:C8φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).99(C2xC4)192,667
(C2xDic3).100(C2xC4) = Dic3xM4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).100(C2xC4)192,676
(C2xDic3).101(C2xC4) = Dic3:4M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).101(C2xC4)192,677
(C2xDic3).102(C2xC4) = D6:6M4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic348(C2xDic3).102(C2xC4)192,685
(C2xDic3).103(C2xC4) = C2xC42:2S3φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).103(C2xC4)192,1031
(C2xDic3).104(C2xC4) = C22xC8:S3φ: C2xC4/C22C2 ⊆ Out C2xDic396(C2xDic3).104(C2xC4)192,1296
(C2xDic3).105(C2xC4) = C2xS3xM4(2)φ: C2xC4/C22C2 ⊆ Out C2xDic348(C2xDic3).105(C2xC4)192,1302
(C2xDic3).106(C2xC4) = S3xC4xC8φ: trivial image96(C2xDic3).106(C2xC4)192,243
(C2xDic3).107(C2xC4) = S3xC8:C4φ: trivial image96(C2xDic3).107(C2xC4)192,263
(C2xDic3).108(C2xC4) = Dic3.5M4(2)φ: trivial image96(C2xDic3).108(C2xC4)192,277
(C2xDic3).109(C2xC4) = Dic3xC42φ: trivial image192(C2xDic3).109(C2xC4)192,489
(C2xDic3).110(C2xC4) = Dic3xC2xC8φ: trivial image192(C2xDic3).110(C2xC4)192,657
(C2xDic3).111(C2xC4) = C2xC4:C4:7S3φ: trivial image96(C2xDic3).111(C2xC4)192,1061
(C2xDic3).112(C2xC4) = S3xC22xC8φ: trivial image96(C2xDic3).112(C2xC4)192,1295

׿
x
:
Z
F
o
wr
Q
<