Copied to
clipboard

G = C8xD12order 192 = 26·3

Direct product of C8 and D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8xD12, C24:25D4, C42.256D6, C3:1(C8xD4), C4:2(S3xC8), (C4xC8):3S3, C12:4(C2xC8), D6:1(C2xC8), C6.4(C4xD4), (C4xC24):23C2, D6:C8:41C2, C2.1(C4xD12), D6:C4.18C4, C12:C8:36C2, C6.3(C8oD4), C4.74(C2xD12), (C2xC8).339D6, C6.4(C22xC8), (C4xD12).29C2, (C2xD12).18C4, C2.2(C8oD12), C12.294(C2xD4), C4:Dic3.23C4, C4.125(C4oD12), C12.241(C4oD4), (C4xC12).323C22, (C2xC24).342C22, (C2xC12).804C23, C2.6(S3xC2xC8), (S3xC2xC8):11C2, C22.36(S3xC2xC4), (C2xC4).103(C4xS3), (C2xC12).220(C2xC4), (C2xC3:C8).290C22, (S3xC2xC4).266C22, (C2xC6).59(C22xC4), (C22xS3).31(C2xC4), (C2xC4).746(C22xS3), (C2xDic3).46(C2xC4), SmallGroup(192,245)

Series: Derived Chief Lower central Upper central

C1C6 — C8xD12
C1C3C6C12C2xC12S3xC2xC4C4xD12 — C8xD12
C3C6 — C8xD12
C1C2xC8C4xC8

Generators and relations for C8xD12
 G = < a,b,c | a8=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 312 in 134 conjugacy classes, 63 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, C12, C12, D6, D6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C2xC8, C22xC4, C2xD4, C3:C8, C24, C24, C4xS3, D12, C2xDic3, C2xC12, C22xS3, C4xC8, C22:C8, C4:C8, C4xD4, C22xC8, S3xC8, C2xC3:C8, C4:Dic3, D6:C4, C4xC12, C2xC24, S3xC2xC4, C2xD12, C8xD4, C12:C8, D6:C8, C4xC24, C4xD12, S3xC2xC8, C8xD12
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D4, C23, D6, C2xC8, C22xC4, C2xD4, C4oD4, C4xS3, D12, C22xS3, C4xD4, C22xC8, C8oD4, S3xC8, S3xC2xC4, C2xD12, C4oD12, C8xD4, C4xD12, S3xC2xC8, C8oD12, C8xD12

Smallest permutation representation of C8xD12
On 96 points
Generators in S96
(1 82 67 58 23 34 42 93)(2 83 68 59 24 35 43 94)(3 84 69 60 13 36 44 95)(4 73 70 49 14 25 45 96)(5 74 71 50 15 26 46 85)(6 75 72 51 16 27 47 86)(7 76 61 52 17 28 48 87)(8 77 62 53 18 29 37 88)(9 78 63 54 19 30 38 89)(10 79 64 55 20 31 39 90)(11 80 65 56 21 32 40 91)(12 81 66 57 22 33 41 92)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 23)(14 22)(15 21)(16 20)(17 19)(25 33)(26 32)(27 31)(28 30)(34 36)(38 48)(39 47)(40 46)(41 45)(42 44)(49 57)(50 56)(51 55)(52 54)(58 60)(61 63)(64 72)(65 71)(66 70)(67 69)(73 81)(74 80)(75 79)(76 78)(82 84)(85 91)(86 90)(87 89)(92 96)(93 95)

G:=sub<Sym(96)| (1,82,67,58,23,34,42,93)(2,83,68,59,24,35,43,94)(3,84,69,60,13,36,44,95)(4,73,70,49,14,25,45,96)(5,74,71,50,15,26,46,85)(6,75,72,51,16,27,47,86)(7,76,61,52,17,28,48,87)(8,77,62,53,18,29,37,88)(9,78,63,54,19,30,38,89)(10,79,64,55,20,31,39,90)(11,80,65,56,21,32,40,91)(12,81,66,57,22,33,41,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(25,33)(26,32)(27,31)(28,30)(34,36)(38,48)(39,47)(40,46)(41,45)(42,44)(49,57)(50,56)(51,55)(52,54)(58,60)(61,63)(64,72)(65,71)(66,70)(67,69)(73,81)(74,80)(75,79)(76,78)(82,84)(85,91)(86,90)(87,89)(92,96)(93,95)>;

G:=Group( (1,82,67,58,23,34,42,93)(2,83,68,59,24,35,43,94)(3,84,69,60,13,36,44,95)(4,73,70,49,14,25,45,96)(5,74,71,50,15,26,46,85)(6,75,72,51,16,27,47,86)(7,76,61,52,17,28,48,87)(8,77,62,53,18,29,37,88)(9,78,63,54,19,30,38,89)(10,79,64,55,20,31,39,90)(11,80,65,56,21,32,40,91)(12,81,66,57,22,33,41,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(25,33)(26,32)(27,31)(28,30)(34,36)(38,48)(39,47)(40,46)(41,45)(42,44)(49,57)(50,56)(51,55)(52,54)(58,60)(61,63)(64,72)(65,71)(66,70)(67,69)(73,81)(74,80)(75,79)(76,78)(82,84)(85,91)(86,90)(87,89)(92,96)(93,95) );

G=PermutationGroup([[(1,82,67,58,23,34,42,93),(2,83,68,59,24,35,43,94),(3,84,69,60,13,36,44,95),(4,73,70,49,14,25,45,96),(5,74,71,50,15,26,46,85),(6,75,72,51,16,27,47,86),(7,76,61,52,17,28,48,87),(8,77,62,53,18,29,37,88),(9,78,63,54,19,30,38,89),(10,79,64,55,20,31,39,90),(11,80,65,56,21,32,40,91),(12,81,66,57,22,33,41,92)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,23),(14,22),(15,21),(16,20),(17,19),(25,33),(26,32),(27,31),(28,30),(34,36),(38,48),(39,47),(40,46),(41,45),(42,44),(49,57),(50,56),(51,55),(52,54),(58,60),(61,63),(64,72),(65,71),(66,70),(67,69),(73,81),(74,80),(75,79),(76,78),(82,84),(85,91),(86,90),(87,89),(92,96),(93,95)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C8A···8H8I8J8K8L8M···8T12A···12L24A···24P
order1222222234444444444446668···888888···812···1224···24
size1111666621111222266662221···122226···62···22···2

72 irreducible representations

dim111111111122222222222
type+++++++++++
imageC1C2C2C2C2C2C4C4C4C8S3D4D6D6C4oD4D12C4xS3C8oD4S3xC8C4oD12C8oD12
kernelC8xD12C12:C8D6:C8C4xC24C4xD12S3xC2xC8C4:Dic3D6:C4C2xD12D12C4xC8C24C42C2xC8C12C8C2xC4C6C4C4C2
# reps1121122421612122444848

Matrix representation of C8xD12 in GL3(F73) generated by

1000
0630
0063
,
7200
0597
06666
,
7200
010
0172
G:=sub<GL(3,GF(73))| [10,0,0,0,63,0,0,0,63],[72,0,0,0,59,66,0,7,66],[72,0,0,0,1,1,0,0,72] >;

C8xD12 in GAP, Magma, Sage, TeX

C_8\times D_{12}
% in TeX

G:=Group("C8xD12");
// GroupNames label

G:=SmallGroup(192,245);
// by ID

G=gap.SmallGroup(192,245);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,58,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<