Copied to
clipboard

G = C4xD25order 200 = 23·52

Direct product of C4 and D25

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4xD25, C100:2C2, C20.5D5, C2.1D50, D50.2C2, C10.7D10, Dic25:2C2, C50.2C22, C5.(C4xD5), C25:2(C2xC4), SmallGroup(200,5)

Series: Derived Chief Lower central Upper central

C1C25 — C4xD25
C1C5C25C50D50 — C4xD25
C25 — C4xD25
C1C4

Generators and relations for C4xD25
 G = < a,b,c | a4=b25=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 164 in 24 conjugacy classes, 14 normal (12 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D5, D10, C4xD5, D25, D50, C4xD25
25C2
25C2
25C22
25C4
5D5
5D5
25C2xC4
5D10
5Dic5
5C4xD5

Smallest permutation representation of C4xD25
On 100 points
Generators in S100
(1 76 50 71)(2 77 26 72)(3 78 27 73)(4 79 28 74)(5 80 29 75)(6 81 30 51)(7 82 31 52)(8 83 32 53)(9 84 33 54)(10 85 34 55)(11 86 35 56)(12 87 36 57)(13 88 37 58)(14 89 38 59)(15 90 39 60)(16 91 40 61)(17 92 41 62)(18 93 42 63)(19 94 43 64)(20 95 44 65)(21 96 45 66)(22 97 46 67)(23 98 47 68)(24 99 48 69)(25 100 49 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 49)(2 48)(3 47)(4 46)(5 45)(6 44)(7 43)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 28)(23 27)(24 26)(25 50)(51 95)(52 94)(53 93)(54 92)(55 91)(56 90)(57 89)(58 88)(59 87)(60 86)(61 85)(62 84)(63 83)(64 82)(65 81)(66 80)(67 79)(68 78)(69 77)(70 76)(71 100)(72 99)(73 98)(74 97)(75 96)

G:=sub<Sym(100)| (1,76,50,71)(2,77,26,72)(3,78,27,73)(4,79,28,74)(5,80,29,75)(6,81,30,51)(7,82,31,52)(8,83,32,53)(9,84,33,54)(10,85,34,55)(11,86,35,56)(12,87,36,57)(13,88,37,58)(14,89,38,59)(15,90,39,60)(16,91,40,61)(17,92,41,62)(18,93,42,63)(19,94,43,64)(20,95,44,65)(21,96,45,66)(22,97,46,67)(23,98,47,68)(24,99,48,69)(25,100,49,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)(25,50)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,89)(58,88)(59,87)(60,86)(61,85)(62,84)(63,83)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,100)(72,99)(73,98)(74,97)(75,96)>;

G:=Group( (1,76,50,71)(2,77,26,72)(3,78,27,73)(4,79,28,74)(5,80,29,75)(6,81,30,51)(7,82,31,52)(8,83,32,53)(9,84,33,54)(10,85,34,55)(11,86,35,56)(12,87,36,57)(13,88,37,58)(14,89,38,59)(15,90,39,60)(16,91,40,61)(17,92,41,62)(18,93,42,63)(19,94,43,64)(20,95,44,65)(21,96,45,66)(22,97,46,67)(23,98,47,68)(24,99,48,69)(25,100,49,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,49)(2,48)(3,47)(4,46)(5,45)(6,44)(7,43)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)(25,50)(51,95)(52,94)(53,93)(54,92)(55,91)(56,90)(57,89)(58,88)(59,87)(60,86)(61,85)(62,84)(63,83)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,100)(72,99)(73,98)(74,97)(75,96) );

G=PermutationGroup([[(1,76,50,71),(2,77,26,72),(3,78,27,73),(4,79,28,74),(5,80,29,75),(6,81,30,51),(7,82,31,52),(8,83,32,53),(9,84,33,54),(10,85,34,55),(11,86,35,56),(12,87,36,57),(13,88,37,58),(14,89,38,59),(15,90,39,60),(16,91,40,61),(17,92,41,62),(18,93,42,63),(19,94,43,64),(20,95,44,65),(21,96,45,66),(22,97,46,67),(23,98,47,68),(24,99,48,69),(25,100,49,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,49),(2,48),(3,47),(4,46),(5,45),(6,44),(7,43),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,28),(23,27),(24,26),(25,50),(51,95),(52,94),(53,93),(54,92),(55,91),(56,90),(57,89),(58,88),(59,87),(60,86),(61,85),(62,84),(63,83),(64,82),(65,81),(66,80),(67,79),(68,78),(69,77),(70,76),(71,100),(72,99),(73,98),(74,97),(75,96)]])

C4xD25 is a maximal subgroup of   C8:D25  D25:C8  C100.C4  C100:C4  D100:5C2  D4:2D25  Q8:2D25
C4xD25 is a maximal quotient of   C8:D25  C50.D4  D50:C4

56 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B10A10B20A20B20C20D25A···25J50A···50J100A···100T
order122244445510102020202025···2550···50100···100
size112525112525222222222···22···22···2

56 irreducible representations

dim11111222222
type++++++++
imageC1C2C2C2C4D5D10C4xD5D25D50C4xD25
kernelC4xD25Dic25C100D50D25C20C10C5C4C2C1
# reps11114224101020

Matrix representation of C4xD25 in GL3(F101) generated by

9100
01000
00100
,
100
05193
09161
,
100
02943
01172
G:=sub<GL(3,GF(101))| [91,0,0,0,100,0,0,0,100],[1,0,0,0,51,91,0,93,61],[1,0,0,0,29,11,0,43,72] >;

C4xD25 in GAP, Magma, Sage, TeX

C_4\times D_{25}
% in TeX

G:=Group("C4xD25");
// GroupNames label

G:=SmallGroup(200,5);
// by ID

G=gap.SmallGroup(200,5);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,26,1443,418,4004]);
// Polycyclic

G:=Group<a,b,c|a^4=b^25=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C4xD25 in TeX

׿
x
:
Z
F
o
wr
Q
<