Copied to
clipboard

G = C5xF7order 210 = 2·3·5·7

Direct product of C5 and F7

direct product, metacyclic, supersoluble, monomial, Z-group

Aliases: C5xF7, C7:C30, D7:C15, C35:2C6, C7:C3:C10, (C5xD7):C3, (C5xC7:C3):2C2, SmallGroup(210,1)

Series: Derived Chief Lower central Upper central

C1C7 — C5xF7
C1C7C35C5xC7:C3 — C5xF7
C7 — C5xF7
C1C5

Generators and relations for C5xF7
 G = < a,b,c | a5=b7=c6=1, ab=ba, ac=ca, cbc-1=b5 >

Subgroups: 52 in 16 conjugacy classes, 10 normal (all characteristic)
Quotients: C1, C2, C3, C5, C6, C10, C15, C30, F7, C5xF7
7C2
7C3
7C6
7C10
7C15
7C30

Smallest permutation representation of C5xF7
On 35 points
Generators in S35
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(2 4 3 7 5 6)(9 11 10 14 12 13)(16 18 17 21 19 20)(23 25 24 28 26 27)(30 32 31 35 33 34)

G:=sub<Sym(35)| (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(9,11,10,14,12,13)(16,18,17,21,19,20)(23,25,24,28,26,27)(30,32,31,35,33,34)>;

G:=Group( (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,4,3,7,5,6)(9,11,10,14,12,13)(16,18,17,21,19,20)(23,25,24,28,26,27)(30,32,31,35,33,34) );

G=PermutationGroup([[(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(2,4,3,7,5,6),(9,11,10,14,12,13),(16,18,17,21,19,20),(23,25,24,28,26,27),(30,32,31,35,33,34)]])

35 conjugacy classes

class 1  2 3A3B5A5B5C5D6A6B 7 10A10B10C10D15A···15H30A···30H35A35B35C35D
order123355556671010101015···1530···3035353535
size1777111177677777···77···76666

35 irreducible representations

dim1111111166
type+++
imageC1C2C3C5C6C10C15C30F7C5xF7
kernelC5xF7C5xC7:C3C5xD7F7C35C7:C3D7C7C5C1
# reps1124248814

Matrix representation of C5xF7 in GL6(F211)

5500000
0550000
0055000
0005500
0000550
0000055
,
210210210210210210
100000
010000
001000
000100
000010
,
100000
000001
000100
010000
210210210210210210
000010

G:=sub<GL(6,GF(211))| [55,0,0,0,0,0,0,55,0,0,0,0,0,0,55,0,0,0,0,0,0,55,0,0,0,0,0,0,55,0,0,0,0,0,0,55],[210,1,0,0,0,0,210,0,1,0,0,0,210,0,0,1,0,0,210,0,0,0,1,0,210,0,0,0,0,1,210,0,0,0,0,0],[1,0,0,0,210,0,0,0,0,1,210,0,0,0,0,0,210,0,0,0,1,0,210,0,0,0,0,0,210,1,0,1,0,0,210,0] >;

C5xF7 in GAP, Magma, Sage, TeX

C_5\times F_7
% in TeX

G:=Group("C5xF7");
// GroupNames label

G:=SmallGroup(210,1);
// by ID

G=gap.SmallGroup(210,1);
# by ID

G:=PCGroup([4,-2,-3,-5,-7,2883,967]);
// Polycyclic

G:=Group<a,b,c|a^5=b^7=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C5xF7 in TeX

׿
x
:
Z
F
o
wr
Q
<