Copied to
clipboard

G = D26:C4order 208 = 24·13

1st semidirect product of D26 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D26:1C4, C26.6D4, C2.2D52, C22.6D26, (C2xC52):1C2, (C2xC4):1D13, C2.5(C4xD13), C13:2(C22:C4), C26.12(C2xC4), (C2xDic13):1C2, C2.2(C13:D4), (C2xC26).6C22, (C22xD13).1C2, SmallGroup(208,14)

Series: Derived Chief Lower central Upper central

C1C26 — D26:C4
C1C13C26C2xC26C22xD13 — D26:C4
C13C26 — D26:C4
C1C22C2xC4

Generators and relations for D26:C4
 G = < a,b,c | a26=b2=c4=1, bab=a-1, ac=ca, cbc-1=a13b >

Subgroups: 226 in 34 conjugacy classes, 17 normal (15 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C22:C4, D13, D26, C4xD13, D52, C13:D4, D26:C4
26C2
26C2
2C4
13C22
13C22
26C4
26C22
26C22
2D13
2D13
13C2xC4
13C23
2D26
2D26
2Dic13
2C52
13C22:C4

Smallest permutation representation of D26:C4
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 44)(2 43)(3 42)(4 41)(5 40)(6 39)(7 38)(8 37)(9 36)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 52)(20 51)(21 50)(22 49)(23 48)(24 47)(25 46)(26 45)(53 84)(54 83)(55 82)(56 81)(57 80)(58 79)(59 104)(60 103)(61 102)(62 101)(63 100)(64 99)(65 98)(66 97)(67 96)(68 95)(69 94)(70 93)(71 92)(72 91)(73 90)(74 89)(75 88)(76 87)(77 86)(78 85)
(1 91 45 60)(2 92 46 61)(3 93 47 62)(4 94 48 63)(5 95 49 64)(6 96 50 65)(7 97 51 66)(8 98 52 67)(9 99 27 68)(10 100 28 69)(11 101 29 70)(12 102 30 71)(13 103 31 72)(14 104 32 73)(15 79 33 74)(16 80 34 75)(17 81 35 76)(18 82 36 77)(19 83 37 78)(20 84 38 53)(21 85 39 54)(22 86 40 55)(23 87 41 56)(24 88 42 57)(25 89 43 58)(26 90 44 59)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(53,84)(54,83)(55,82)(56,81)(57,80)(58,79)(59,104)(60,103)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85), (1,91,45,60)(2,92,46,61)(3,93,47,62)(4,94,48,63)(5,95,49,64)(6,96,50,65)(7,97,51,66)(8,98,52,67)(9,99,27,68)(10,100,28,69)(11,101,29,70)(12,102,30,71)(13,103,31,72)(14,104,32,73)(15,79,33,74)(16,80,34,75)(17,81,35,76)(18,82,36,77)(19,83,37,78)(20,84,38,53)(21,85,39,54)(22,86,40,55)(23,87,41,56)(24,88,42,57)(25,89,43,58)(26,90,44,59)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(53,84)(54,83)(55,82)(56,81)(57,80)(58,79)(59,104)(60,103)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85), (1,91,45,60)(2,92,46,61)(3,93,47,62)(4,94,48,63)(5,95,49,64)(6,96,50,65)(7,97,51,66)(8,98,52,67)(9,99,27,68)(10,100,28,69)(11,101,29,70)(12,102,30,71)(13,103,31,72)(14,104,32,73)(15,79,33,74)(16,80,34,75)(17,81,35,76)(18,82,36,77)(19,83,37,78)(20,84,38,53)(21,85,39,54)(22,86,40,55)(23,87,41,56)(24,88,42,57)(25,89,43,58)(26,90,44,59) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,44),(2,43),(3,42),(4,41),(5,40),(6,39),(7,38),(8,37),(9,36),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,52),(20,51),(21,50),(22,49),(23,48),(24,47),(25,46),(26,45),(53,84),(54,83),(55,82),(56,81),(57,80),(58,79),(59,104),(60,103),(61,102),(62,101),(63,100),(64,99),(65,98),(66,97),(67,96),(68,95),(69,94),(70,93),(71,92),(72,91),(73,90),(74,89),(75,88),(76,87),(77,86),(78,85)], [(1,91,45,60),(2,92,46,61),(3,93,47,62),(4,94,48,63),(5,95,49,64),(6,96,50,65),(7,97,51,66),(8,98,52,67),(9,99,27,68),(10,100,28,69),(11,101,29,70),(12,102,30,71),(13,103,31,72),(14,104,32,73),(15,79,33,74),(16,80,34,75),(17,81,35,76),(18,82,36,77),(19,83,37,78),(20,84,38,53),(21,85,39,54),(22,86,40,55),(23,87,41,56),(24,88,42,57),(25,89,43,58),(26,90,44,59)]])

D26:C4 is a maximal subgroup of
C42:D13  C4xD52  C4.D52  C42:2D13  C22:C4xD13  Dic13:4D4  C22:D52  D26.12D4  D26:D4  C23.6D26  C22.D52  C4:C4:7D13  D52:8C4  D26.13D4  C4:2D52  D26:Q8  D26:2Q8  C4:C4:D13  C4xC13:D4  C23.23D26  C52:7D4  C23:D26  Dic13:D4  D26:3Q8  C52.23D4
D26:C4 is a maximal quotient of
D52:4C4  C22.2D52  D52:6C4  C26.Q16  C52.44D4  D26:1C8  D52:5C4  C52.46D4  C4.12D52  D52:7C4  C26.10C42

58 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D13A···13F26A···26R52A···52X
order122222444413···1326···2652···52
size111126262226262···22···22···2

58 irreducible representations

dim11111222222
type++++++++
imageC1C2C2C2C4D4D13D26C4xD13D52C13:D4
kernelD26:C4C2xDic13C2xC52C22xD13D26C26C2xC4C22C2C2C2
# reps11114266121212

Matrix representation of D26:C4 in GL3(F53) generated by

100
0152
01012
,
100
01341
01440
,
2300
02617
03227
G:=sub<GL(3,GF(53))| [1,0,0,0,15,10,0,2,12],[1,0,0,0,13,14,0,41,40],[23,0,0,0,26,32,0,17,27] >;

D26:C4 in GAP, Magma, Sage, TeX

D_{26}\rtimes C_4
% in TeX

G:=Group("D26:C4");
// GroupNames label

G:=SmallGroup(208,14);
// by ID

G=gap.SmallGroup(208,14);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,101,26,4804]);
// Polycyclic

G:=Group<a,b,c|a^26=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^13*b>;
// generators/relations

Export

Subgroup lattice of D26:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<