extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC6).1(C2xC6) = He3:3Q8 | φ: C2xC6/C2 → C6 ⊆ Aut C3xC6 | 72 | 6- | (C3xC6).1(C2xC6) | 216,49 |
(C3xC6).2(C2xC6) = C4xC32:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).2(C2xC6) | 216,50 |
(C3xC6).3(C2xC6) = He3:4D4 | φ: C2xC6/C2 → C6 ⊆ Aut C3xC6 | 36 | 6+ | (C3xC6).3(C2xC6) | 216,51 |
(C3xC6).4(C2xC6) = C2xC32:C12 | φ: C2xC6/C2 → C6 ⊆ Aut C3xC6 | 72 | | (C3xC6).4(C2xC6) | 216,59 |
(C3xC6).5(C2xC6) = He3:6D4 | φ: C2xC6/C2 → C6 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).5(C2xC6) | 216,60 |
(C3xC6).6(C2xC6) = C3xS3xDic3 | φ: C2xC6/C3 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).6(C2xC6) | 216,119 |
(C3xC6).7(C2xC6) = C3xC6.D6 | φ: C2xC6/C3 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).7(C2xC6) | 216,120 |
(C3xC6).8(C2xC6) = C3xD6:S3 | φ: C2xC6/C3 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).8(C2xC6) | 216,121 |
(C3xC6).9(C2xC6) = C3xC3:D12 | φ: C2xC6/C3 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).9(C2xC6) | 216,122 |
(C3xC6).10(C2xC6) = C3xC32:2Q8 | φ: C2xC6/C3 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).10(C2xC6) | 216,123 |
(C3xC6).11(C2xC6) = C2xC4xHe3 | φ: C2xC6/C22 → C3 ⊆ Aut C3xC6 | 72 | | (C3xC6).11(C2xC6) | 216,74 |
(C3xC6).12(C2xC6) = C2xC4x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C3xC6 | 72 | | (C3xC6).12(C2xC6) | 216,75 |
(C3xC6).13(C2xC6) = D4xHe3 | φ: C2xC6/C22 → C3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).13(C2xC6) | 216,77 |
(C3xC6).14(C2xC6) = D4x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C3xC6 | 36 | 6 | (C3xC6).14(C2xC6) | 216,78 |
(C3xC6).15(C2xC6) = Q8xHe3 | φ: C2xC6/C22 → C3 ⊆ Aut C3xC6 | 72 | 6 | (C3xC6).15(C2xC6) | 216,80 |
(C3xC6).16(C2xC6) = Q8x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C3xC6 | 72 | 6 | (C3xC6).16(C2xC6) | 216,81 |
(C3xC6).17(C2xC6) = C23x3- 1+2 | φ: C2xC6/C22 → C3 ⊆ Aut C3xC6 | 72 | | (C3xC6).17(C2xC6) | 216,116 |
(C3xC6).18(C2xC6) = C9xDic6 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | 2 | (C3xC6).18(C2xC6) | 216,44 |
(C3xC6).19(C2xC6) = S3xC36 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | 2 | (C3xC6).19(C2xC6) | 216,47 |
(C3xC6).20(C2xC6) = C9xD12 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | 2 | (C3xC6).20(C2xC6) | 216,48 |
(C3xC6).21(C2xC6) = Dic3xC18 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).21(C2xC6) | 216,56 |
(C3xC6).22(C2xC6) = C9xC3:D4 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 36 | 2 | (C3xC6).22(C2xC6) | 216,58 |
(C3xC6).23(C2xC6) = S3xC2xC18 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).23(C2xC6) | 216,109 |
(C3xC6).24(C2xC6) = C32xDic6 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).24(C2xC6) | 216,135 |
(C3xC6).25(C2xC6) = S3xC3xC12 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).25(C2xC6) | 216,136 |
(C3xC6).26(C2xC6) = C32xD12 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).26(C2xC6) | 216,137 |
(C3xC6).27(C2xC6) = Dic3xC3xC6 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).27(C2xC6) | 216,138 |
(C3xC6).28(C2xC6) = C32xC3:D4 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 36 | | (C3xC6).28(C2xC6) | 216,139 |
(C3xC6).29(C2xC6) = C3xC32:4Q8 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).29(C2xC6) | 216,140 |
(C3xC6).30(C2xC6) = C12xC3:S3 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).30(C2xC6) | 216,141 |
(C3xC6).31(C2xC6) = C3xC12:S3 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).31(C2xC6) | 216,142 |
(C3xC6).32(C2xC6) = C6xC3:Dic3 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).32(C2xC6) | 216,143 |
(C3xC6).33(C2xC6) = C3xC32:7D4 | φ: C2xC6/C6 → C2 ⊆ Aut C3xC6 | 36 | | (C3xC6).33(C2xC6) | 216,144 |
(C3xC6).34(C2xC6) = D4xC3xC9 | central extension (φ=1) | 108 | | (C3xC6).34(C2xC6) | 216,76 |
(C3xC6).35(C2xC6) = Q8xC3xC9 | central extension (φ=1) | 216 | | (C3xC6).35(C2xC6) | 216,79 |
(C3xC6).36(C2xC6) = D4xC33 | central extension (φ=1) | 108 | | (C3xC6).36(C2xC6) | 216,151 |
(C3xC6).37(C2xC6) = Q8xC33 | central extension (φ=1) | 216 | | (C3xC6).37(C2xC6) | 216,152 |