Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C2xC6

Direct product G=NxQ with N=C3xC6 and Q=C2xC6
dρLabelID
C63216C6^3216,177

Semidirect products G=N:Q with N=C3xC6 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C3xC6):(C2xC6) = C22xC32:C6φ: C2xC6/C2C6 ⊆ Aut C3xC636(C3xC6):(C2xC6)216,110
(C3xC6):2(C2xC6) = S32xC6φ: C2xC6/C3C22 ⊆ Aut C3xC6244(C3xC6):2(C2xC6)216,170
(C3xC6):3(C2xC6) = C23xHe3φ: C2xC6/C22C3 ⊆ Aut C3xC672(C3xC6):3(C2xC6)216,115
(C3xC6):4(C2xC6) = S3xC62φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6):4(C2xC6)216,174
(C3xC6):5(C2xC6) = C2xC6xC3:S3φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6):5(C2xC6)216,175

Non-split extensions G=N.Q with N=C3xC6 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
(C3xC6).1(C2xC6) = He3:3Q8φ: C2xC6/C2C6 ⊆ Aut C3xC6726-(C3xC6).1(C2xC6)216,49
(C3xC6).2(C2xC6) = C4xC32:C6φ: C2xC6/C2C6 ⊆ Aut C3xC6366(C3xC6).2(C2xC6)216,50
(C3xC6).3(C2xC6) = He3:4D4φ: C2xC6/C2C6 ⊆ Aut C3xC6366+(C3xC6).3(C2xC6)216,51
(C3xC6).4(C2xC6) = C2xC32:C12φ: C2xC6/C2C6 ⊆ Aut C3xC672(C3xC6).4(C2xC6)216,59
(C3xC6).5(C2xC6) = He3:6D4φ: C2xC6/C2C6 ⊆ Aut C3xC6366(C3xC6).5(C2xC6)216,60
(C3xC6).6(C2xC6) = C3xS3xDic3φ: C2xC6/C3C22 ⊆ Aut C3xC6244(C3xC6).6(C2xC6)216,119
(C3xC6).7(C2xC6) = C3xC6.D6φ: C2xC6/C3C22 ⊆ Aut C3xC6244(C3xC6).7(C2xC6)216,120
(C3xC6).8(C2xC6) = C3xD6:S3φ: C2xC6/C3C22 ⊆ Aut C3xC6244(C3xC6).8(C2xC6)216,121
(C3xC6).9(C2xC6) = C3xC3:D12φ: C2xC6/C3C22 ⊆ Aut C3xC6244(C3xC6).9(C2xC6)216,122
(C3xC6).10(C2xC6) = C3xC32:2Q8φ: C2xC6/C3C22 ⊆ Aut C3xC6244(C3xC6).10(C2xC6)216,123
(C3xC6).11(C2xC6) = C2xC4xHe3φ: C2xC6/C22C3 ⊆ Aut C3xC672(C3xC6).11(C2xC6)216,74
(C3xC6).12(C2xC6) = C2xC4x3- 1+2φ: C2xC6/C22C3 ⊆ Aut C3xC672(C3xC6).12(C2xC6)216,75
(C3xC6).13(C2xC6) = D4xHe3φ: C2xC6/C22C3 ⊆ Aut C3xC6366(C3xC6).13(C2xC6)216,77
(C3xC6).14(C2xC6) = D4x3- 1+2φ: C2xC6/C22C3 ⊆ Aut C3xC6366(C3xC6).14(C2xC6)216,78
(C3xC6).15(C2xC6) = Q8xHe3φ: C2xC6/C22C3 ⊆ Aut C3xC6726(C3xC6).15(C2xC6)216,80
(C3xC6).16(C2xC6) = Q8x3- 1+2φ: C2xC6/C22C3 ⊆ Aut C3xC6726(C3xC6).16(C2xC6)216,81
(C3xC6).17(C2xC6) = C23x3- 1+2φ: C2xC6/C22C3 ⊆ Aut C3xC672(C3xC6).17(C2xC6)216,116
(C3xC6).18(C2xC6) = C9xDic6φ: C2xC6/C6C2 ⊆ Aut C3xC6722(C3xC6).18(C2xC6)216,44
(C3xC6).19(C2xC6) = S3xC36φ: C2xC6/C6C2 ⊆ Aut C3xC6722(C3xC6).19(C2xC6)216,47
(C3xC6).20(C2xC6) = C9xD12φ: C2xC6/C6C2 ⊆ Aut C3xC6722(C3xC6).20(C2xC6)216,48
(C3xC6).21(C2xC6) = Dic3xC18φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).21(C2xC6)216,56
(C3xC6).22(C2xC6) = C9xC3:D4φ: C2xC6/C6C2 ⊆ Aut C3xC6362(C3xC6).22(C2xC6)216,58
(C3xC6).23(C2xC6) = S3xC2xC18φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).23(C2xC6)216,109
(C3xC6).24(C2xC6) = C32xDic6φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).24(C2xC6)216,135
(C3xC6).25(C2xC6) = S3xC3xC12φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).25(C2xC6)216,136
(C3xC6).26(C2xC6) = C32xD12φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).26(C2xC6)216,137
(C3xC6).27(C2xC6) = Dic3xC3xC6φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).27(C2xC6)216,138
(C3xC6).28(C2xC6) = C32xC3:D4φ: C2xC6/C6C2 ⊆ Aut C3xC636(C3xC6).28(C2xC6)216,139
(C3xC6).29(C2xC6) = C3xC32:4Q8φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).29(C2xC6)216,140
(C3xC6).30(C2xC6) = C12xC3:S3φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).30(C2xC6)216,141
(C3xC6).31(C2xC6) = C3xC12:S3φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).31(C2xC6)216,142
(C3xC6).32(C2xC6) = C6xC3:Dic3φ: C2xC6/C6C2 ⊆ Aut C3xC672(C3xC6).32(C2xC6)216,143
(C3xC6).33(C2xC6) = C3xC32:7D4φ: C2xC6/C6C2 ⊆ Aut C3xC636(C3xC6).33(C2xC6)216,144
(C3xC6).34(C2xC6) = D4xC3xC9central extension (φ=1)108(C3xC6).34(C2xC6)216,76
(C3xC6).35(C2xC6) = Q8xC3xC9central extension (φ=1)216(C3xC6).35(C2xC6)216,79
(C3xC6).36(C2xC6) = D4xC33central extension (φ=1)108(C3xC6).36(C2xC6)216,151
(C3xC6).37(C2xC6) = Q8xC33central extension (φ=1)216(C3xC6).37(C2xC6)216,152

׿
x
:
Z
F
o
wr
Q
<