Copied to
clipboard

G = Dic3xC18order 216 = 23·33

Direct product of C18 and Dic3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: Dic3xC18, C6:C36, C18.22D6, C62.10C6, (C3xC18):1C4, C3:2(C2xC36), C22.(S3xC9), C6.32(S3xC6), C2.2(S3xC18), (C2xC6).3C18, (C3xC6).7C12, (C6xC18).1C2, (C2xC18).6S3, C6.4(C2xC18), (C6xDic3).C3, C3.4(C6xDic3), C6.9(C3xDic3), C32.3(C2xC12), (C3xDic3).6C6, (C3xC18).11C22, (C3xC9):7(C2xC4), (C3xC6).21(C2xC6), (C2xC6).20(C3xS3), (C2xC18)o(C6xDic3), (C2xC18)o(C3xDic3), SmallGroup(216,56)

Series: Derived Chief Lower central Upper central

C1C3 — Dic3xC18
C1C3C32C3xC6C3xC18C9xDic3 — Dic3xC18
C3 — Dic3xC18
C1C2xC18

Generators and relations for Dic3xC18
 G = < a,b,c | a18=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 86 in 58 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2xC4, C9, C9, C32, Dic3, C12, C2xC6, C2xC6, C18, C18, C18, C3xC6, C3xC6, C2xDic3, C2xC12, C3xC9, C36, C2xC18, C2xC18, C3xDic3, C62, C3xC18, C3xC18, C2xC36, C6xDic3, C9xDic3, C6xC18, Dic3xC18
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, C9, Dic3, C12, D6, C2xC6, C18, C3xS3, C2xDic3, C2xC12, C36, C2xC18, C3xDic3, S3xC6, S3xC9, C2xC36, C6xDic3, C9xDic3, S3xC18, Dic3xC18

Smallest permutation representation of Dic3xC18
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 49 7 37 13 43)(2 50 8 38 14 44)(3 51 9 39 15 45)(4 52 10 40 16 46)(5 53 11 41 17 47)(6 54 12 42 18 48)(19 71 31 65 25 59)(20 72 32 66 26 60)(21 55 33 67 27 61)(22 56 34 68 28 62)(23 57 35 69 29 63)(24 58 36 70 30 64)
(1 22 37 68)(2 23 38 69)(3 24 39 70)(4 25 40 71)(5 26 41 72)(6 27 42 55)(7 28 43 56)(8 29 44 57)(9 30 45 58)(10 31 46 59)(11 32 47 60)(12 33 48 61)(13 34 49 62)(14 35 50 63)(15 36 51 64)(16 19 52 65)(17 20 53 66)(18 21 54 67)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,49,7,37,13,43)(2,50,8,38,14,44)(3,51,9,39,15,45)(4,52,10,40,16,46)(5,53,11,41,17,47)(6,54,12,42,18,48)(19,71,31,65,25,59)(20,72,32,66,26,60)(21,55,33,67,27,61)(22,56,34,68,28,62)(23,57,35,69,29,63)(24,58,36,70,30,64), (1,22,37,68)(2,23,38,69)(3,24,39,70)(4,25,40,71)(5,26,41,72)(6,27,42,55)(7,28,43,56)(8,29,44,57)(9,30,45,58)(10,31,46,59)(11,32,47,60)(12,33,48,61)(13,34,49,62)(14,35,50,63)(15,36,51,64)(16,19,52,65)(17,20,53,66)(18,21,54,67)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,49,7,37,13,43)(2,50,8,38,14,44)(3,51,9,39,15,45)(4,52,10,40,16,46)(5,53,11,41,17,47)(6,54,12,42,18,48)(19,71,31,65,25,59)(20,72,32,66,26,60)(21,55,33,67,27,61)(22,56,34,68,28,62)(23,57,35,69,29,63)(24,58,36,70,30,64), (1,22,37,68)(2,23,38,69)(3,24,39,70)(4,25,40,71)(5,26,41,72)(6,27,42,55)(7,28,43,56)(8,29,44,57)(9,30,45,58)(10,31,46,59)(11,32,47,60)(12,33,48,61)(13,34,49,62)(14,35,50,63)(15,36,51,64)(16,19,52,65)(17,20,53,66)(18,21,54,67) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,49,7,37,13,43),(2,50,8,38,14,44),(3,51,9,39,15,45),(4,52,10,40,16,46),(5,53,11,41,17,47),(6,54,12,42,18,48),(19,71,31,65,25,59),(20,72,32,66,26,60),(21,55,33,67,27,61),(22,56,34,68,28,62),(23,57,35,69,29,63),(24,58,36,70,30,64)], [(1,22,37,68),(2,23,38,69),(3,24,39,70),(4,25,40,71),(5,26,41,72),(6,27,42,55),(7,28,43,56),(8,29,44,57),(9,30,45,58),(10,31,46,59),(11,32,47,60),(12,33,48,61),(13,34,49,62),(14,35,50,63),(15,36,51,64),(16,19,52,65),(17,20,53,66),(18,21,54,67)]])

Dic3xC18 is a maximal subgroup of   Dic9:Dic3  C18.Dic6  Dic3:Dic9  D18:Dic3  C6.18D36  D18.3D6  S3xC2xC36

108 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D6A···6F6G···6O9A···9F9G···9L12A···12H18A···18R18S···18AJ36A···36X
order12223333344446···66···69···99···912···1218···1818···1836···36
size11111122233331···12···21···12···23···31···12···23···3

108 irreducible representations

dim111111111111222222222
type++++-+
imageC1C2C2C3C4C6C6C9C12C18C18C36S3Dic3D6C3xS3C3xDic3S3xC6S3xC9C9xDic3S3xC18
kernelDic3xC18C9xDic3C6xC18C6xDic3C3xC18C3xDic3C62C2xDic3C3xC6Dic3C2xC6C6C2xC18C18C18C2xC6C6C6C22C2C2
# reps121244268126241212426126

Matrix representation of Dic3xC18 in GL3(F37) generated by

2500
090
009
,
100
01134
0027
,
100
046
02833
G:=sub<GL(3,GF(37))| [25,0,0,0,9,0,0,0,9],[1,0,0,0,11,0,0,34,27],[1,0,0,0,4,28,0,6,33] >;

Dic3xC18 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_{18}
% in TeX

G:=Group("Dic3xC18");
// GroupNames label

G:=SmallGroup(216,56);
// by ID

G=gap.SmallGroup(216,56);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,122,5189]);
// Polycyclic

G:=Group<a,b,c|a^18=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<